
DiSPATCH

Host Support Software Manual

Revision 1.52
Updated 2 May 1997

Part Number: 880-3075-004

Vigra, a division of VisiCom Labs.

Copyright c
 1993-1996 Vigra, a division of VisiCom Labs.

This is revision 1.52 of the DiSPATCH Host Support Software Manual.

Permission is granted to make and distribute verbatim copies of this manual pro-
vided the copyright notice and this permission notice are preserved on all copies.

This document was last updated on 2 May 1997.

CONTENTS

1 Document Overview 1

2 Software Overview 3

2.1 Do you need to use Vigra’s library and drivers? : : : : : : : : : : : : 3

3 Installation 5

3.1 SunOS v4.1.x : 6

3.1.1 Kernel Architecture : 7

3.1.2 Installation Summary : 7

3.1.3 Install the Source Files : 8

3.1.4 Select the Mapping Function : : : : : : : : : : : : : : : : : : : 8

3.1.5 Create the Kernel Configuration File : : : : : : : : : : : : : : 8

3.1.6 Add Driver Entries to “conf.c” : : : : : : : : : : : : : : : : : 10

3.1.7 Files : 10

3.1.8 Configure the Kernel : 11

3.1.9 Build, Install, and Boot the New Kernel : : : : : : : : : : : : 11

3.1.10 Make the Device Handles in “/dev” : : : : : : : : : : : : : : : 11

3.1.11 Test the Driver : 12

3.2 Solaris 2.x : 13

3.2.1 Installation Summary : 13

3.2.2 Configure and Install the MMI Boards : : : : : : : : : : : : : 14

3.2.3 Check Available Disk Space : : : : : : : : : : : : : : : : : : : 14

3.2.4 Install the VIGRAmmi Package : : : : : : : : : : : : : : : : : 14

iii

Contents

3.2.5 Driver Configuration : 15

3.2.6 Test the Installation : 17

3.3 VxWorks : 18

3.3.1 Building the VxWorks package : : : : : : : : : : : : : : : : : : 18

3.3.2 Configuration : 19

3.3.3 The Included Object Files : 20

3.3.4 Testing the Audio System : 21

3.4 IRIX v4.0.x : 23

3.4.1 Installation : 23

3.4.2 Building the Driver : 24

3.4.3 Install the Driver Binary : 24

3.4.4 VME Vector Configuration : 24

3.4.5 The Driver Configuration File : : : : : : : : : : : : : : : : : : 25

3.4.6 Rebuild the Kernel : 26

3.4.7 Boot the New Kernel : 26

3.4.8 Create Device Nodes : 26

3.4.9 Test the Driver : 27

3.5 IRIX v5.2 : 28

3.5.1 Installation : 28

3.5.2 Select a Major Number : 29

3.5.3 Configure “mmidsp.sm” for your MMI boards : : : : : : : : : 29

3.5.4 Build and Install the Driver : : : : : : : : : : : : : : : : : : : 31

3.5.5 Create the Device Handles : 31

3.5.6 Rebuild the Kernel : 32

3.5.7 Boot the New Kernel : 32

3.5.8 Test the Driver : 32

3.6 OS-9 : 33

3.6.1 Functional Overview : 33

3.6.2 Installation : 34

iv Vigra Rev 1.52, 2 May 1997

Contents

3.6.3 Extract DiSPATCH files : 34

3.6.4 Configuration : 35

3.6.5 Compile All Source Files : 35

3.6.6 Edit the System Startup File : : : : : : : : : : : : : : : : : : : 36

3.6.7 Reboot the System : 36

3.6.8 Test the Package : 36

3.7 HP-RT : 37

3.7.1 Installation : 37

3.7.2 Extract the DiSPATCH Files : : : : : : : : : : : : : : : : : : : 38

3.7.3 The HPRTroot Environment Variable : : : : : : : : : : : : : 38

3.7.4 Interrupt Level Allocation : 38

3.7.5 Driver Configuration : 39

3.7.6 Add the Driver : 40

3.7.7 Build a New HP-RT Kernel : 40

3.7.8 Build the Library and Applications : : : : : : : : : : : : : : : 40

3.7.9 Reboot the System : 41

3.7.10 Test the Package : 41

3.8 HP-UX 9.0.x : 42

3.8.1 Installation : 42

3.8.2 Extract the DiSPATCH Files : : : : : : : : : : : : : : : : : : : 43

3.8.3 Configure your new MMI board : : : : : : : : : : : : : : : : : 43

3.8.4 Interrupt Level Allocation : 43

3.8.5 Driver Configuration : 44

3.8.6 Add the Driver to the Master File : : : : : : : : : : : : : : : : 45

3.8.7 Add the Driver to the driver description file : : : : : : : : : : 46

3.8.8 Build a New HP-UX Kernel : : : : : : : : : : : : : : : : : : : 46

3.8.9 Install the New HP-UX Kernel : : : : : : : : : : : : : : : : : : 46

3.8.10 Build the Library and Applications : : : : : : : : : : : : : : : 46

3.8.11 Reboot the System : 47

Rev 1.52, 2 May 1997 Vigra v

Contents

3.8.12 Make the Device Handles in “/dev” : : : : : : : : : : : : : : : 47

3.8.13 Test the Package : 48

3.8.14 HP-UX System Administration Manager (SAM) : : : : : : : 49

3.9 HP-UX 10.xx : 49

3.9.1 Installation : 49

3.9.2 Extract the DiSPATCH Files : : : : : : : : : : : : : : : : : : : 50

3.9.3 Configure the MMI Board : 50

3.9.4 HP-UX VME Settings : 51

3.9.5 Driver Configuration : 51

3.9.6 Build a New HP-UX Kernel : : : : : : : : : : : : : : : : : : : 53

3.9.7 Back Up Your Existing Kernel : : : : : : : : : : : : : : : : : : 53

3.9.8 Install the New HP-UX Kernel : : : : : : : : : : : : : : : : : : 53

3.9.9 Build the Library and Applications : : : : : : : : : : : : : : : 53

3.9.10 Reboot the System : 54

3.9.11 Make the Device Handles in “/dev” : : : : : : : : : : : : : : : 54

3.9.12 Test the Package : 54

3.10 Motorola System V/88 : 55

3.10.1 Installation : 55

3.10.2 Extract the DiSPATCH Files : : : : : : : : : : : : : : : : : : : 56

3.10.3 Check over the definitions in Makefile : : : : : : : : : : : : 56

3.10.4 Build the Device Driver and Configuration Tools : : : : : : : 57

3.10.5 Driver Configuration : 58

3.10.6 Install the DiSPATCH Driver and Support Files : : : : : : : 59

3.10.7 Add the Driver to the Kernel Using /etc/sysgen : : : : : : 59

3.10.8 Verify the Maximum Shared Memory Segment Size (SHMMAX). 60

3.10.9 Build a New Kernel : 60

3.10.10 Reboot the System V/88 System : : : : : : : : : : : : : : : : : 60

3.10.11 Build the Library and Applications : : : : : : : : : : : : : : : 60

3.10.12 Test the Package : 61

vi Vigra Rev 1.52, 2 May 1997

Contents

4 C Programming Library 63

4.1 Library Overview : 63

4.1.1 Device Driver : 63

4.1.2 DSP Naming : 64

4.1.3 Shared Access : 64

4.1.4 Handles : 65

4.1.5 Source Code : 65

4.1.6 Include Files : 65

4.1.7 Completion Tokens : 66

4.2 Initialization and Control Functions : : : : : : : : : : : : : : : : : : : 67

4.2.1 mmi open : 67

4.2.2 mmi close : 69

4.2.3 mmi lib initialize : 70

4.2.4 mmi get dsp : 71

4.2.5 mmi get ram base : 72

4.2.6 mmi get model : 73

4.2.7 mmi start firmware : 74

4.2.8 mmi boot default : 75

4.2.9 mmi diag boot : 76

4.2.10 mmi boot file : 78

4.2.11 mmi halt dsp : 79

4.2.12 mmi poll messages : 80

4.2.13 mmi malloc : 81

4.2.14 mmi test host dram : 82

4.2.15 mmi wait response : 83

4.2.16 mmi complete : 84

4.2.17 mmi check response : 85

4.2.18 mmi get dsp filedes : 86

4.2.19 mmi register callback : 87

Rev 1.52, 2 May 1997 Vigra vii

Contents

4.2.20 mmi delete callback : 88

4.2.21 mmi init cmd codes : 89

4.2.22 mmi start dribble : 90

4.2.23 mmi end dribble : 91

4.2.24 mmi discard resp : 92

4.2.25 mmi parse format : 93

4.2.26 mmi samples per word : 94

4.2.27 mmi dsp command : 95

4.3 DiSPATCH Command Functions : 96

4.3.1 mmi load dspmem : 96

4.3.2 mmi load dspmem file : 97

4.3.3 mmi register counter : 98

4.3.4 mmi end counter : 99

4.3.5 mmi reset counter : 100

4.3.6 mmi read counter : 101

4.3.7 mmi play buf : 102

4.3.8 mmi play subbuffers : 103

4.3.9 mmi record buf : 104

4.3.10 mmi monitor buf : 105

4.3.11 mmi play file : 106

4.3.12 mmi record file : 107

4.3.13 mmi set play format : 108

4.3.14 mmi set record format : 109

4.3.15 mmi set monitor format : 110

4.3.16 mmi set play gain : 111

4.3.17 mmi set record gain : 112

4.3.18 mmi play ctrl : 113

4.3.19 mmi record ctrl : 114

4.3.20 mmi play position : 115

viii Vigra Rev 1.52, 2 May 1997

Contents

4.3.21 mmi record position : 116

4.3.22 mmi monitor position : 117

4.3.23 mmi abort track : 118

4.3.24 mmi abort all play : 119

4.3.25 mmi abort record : 120

4.3.26 mmi abort monitor : 121

4.3.27 mmi led ctrl : 122

4.3.28 mmi set input gain : 123

4.3.29 mmi set output gain : 124

4.3.30 mmi set mixer : 125

4.3.31 mmi set speed change : 126

4.3.32 mmi set resample : 127

4.3.33 mmi set sidetone : 128

4.3.34 mmi transform buffer : 129

4.3.35 mmi transform file : 130

4.3.36 mmi count buffers : 131

4.3.37 mmi clip led : 132

4.3.38 mmi enable measurements : 133

4.3.39 mmi disable measurements : : : : : : : : : : : : : : : : : : : 134

4.3.40 mmi input peak : 135

4.3.41 mmi input bias : 136

4.3.42 mmi signal detect : 137

4.3.43 mmi set equalizer : 139

4.3.44 mmi set reverb : 140

4.3.45 mmi select input : 141

4.3.46 mmi stereo mode : 142

4.3.47 mmi query stereo : 143

4.3.48 mmi filter play : 144

4.3.49 mmi filter record : 145

Rev 1.52, 2 May 1997 Vigra ix

Contents

4.3.50 mmi load play fir : 146

4.3.51 mmi load record fir : 147

4.3.52 mmi set srate : 148

4.3.53 mmi request srate : 149

4.3.54 mmi set pnm : 150

4.3.55 mmi play tone : 151

4.3.56 mmi ramtone : 152

4.3.57 mmi end tone : 154

4.3.58 mmi load table : 155

4.3.59 mmi waveshape : 156

4.3.60 mmi fetch error : 157

4.3.61 mmi enable mail : 158

4.3.62 mmi disable mail : 159

4.3.63 mmi probe firmware : 160

4.3.64 mmi get version : 161

4.3.65 mmi show configuration : 162

4.3.66 mmi test dsp dram : 163

4.3.67 mmi start loopback : 164

4.3.68 mmi end loopback : 165

4.3.69 mmi issue invalid cmd : 166

4.3.70 mmi dsp nop : 167

4.3.71 mmi query load : 168

4.3.72 mmi analog test : 169

4.3.73 mmi hammer dsp : 171

4.3.74 mmi eprom checksum : 172

4.3.75 mmi show state : 173

5 Example Applications 175

5.1 MMI-Test : 175

5.1.1 Running MMI-Test : 175

x Vigra Rev 1.52, 2 May 1997

Contents

5.1.2 The Command Line : 176

5.1.3 Selecting and Initializing an MMI Board : : : : : : : : : : : : 177

5.1.4 An Example : 178

5.1.5 X-Windows Sliders : 179

5.1.6 Command Reference : 180

5.2 ToneShop and SampleTones : 190

5.3 simp play.c and simp record.c : : : : : : : : : : : : : : : : : : : 190

5.4 Play : 190

5.4.1 Unix Usage : 191

5.4.2 VxWorks Usage : 192

5.5 Record : 192

Rev 1.52, 2 May 1997 Vigra xi

1. DOCUMENT OVERVIEW

This manual describes the DiSPATCH Software Package provided by Vigra for use
with the DiSPATCH DSP firmware. The DiSPATCH Software Package includes
the following parts:

� A device driver tailored for each supported host platform.

� A C programming library.

� An interactive DiSPATCH test program.

� Several example application programs.

� A binary image of the DiSPATCH firmware program to upload to the DSP.

This manual describes the installation and use of these programs on the host
system.

This manual does not describe the concepts or operation of DiSPATCH firmware
itself. That information can be found in the DiSPATCH Firmware User’s Manual,
available from Vigra.

This manual is divided into three major parts:

1. System installation.

2. The C programming library.

3. Example applications (including MMI-Test).

Please be sure to read the files called “README” included with the software release.
These files contains information that may not have been included in the latest
release of the printed instructions.

1

Section 1.0

2 Vigra Rev 1.52, 2 May 1997

2. SOFTWARE OVERVIEW

The DiSPATCH system is a unique operating environment that allows the DSP to
process audio streams and buffers on behalf of the host. The DiSPATCH system
consists of two simple parts:

1. The DiSPATCH firmware running on each DSP.

2. The DiSPATCH host support software running on the VME host computer.

These two parts of DiSPATCH communicate over the VME bus, passing messages
and sharing audio data.

2.1 Do you need to use Vigra’s library and drivers?

Strictly speaking, the host programmer does not need to use any of the host support
software provided by Vigra. The DiSPATCH DSP firmware is documented in detail
in the DiSPATCH User’s Manual. The firmware itself is completely independent
of the host environment and does not depend on the library or driver for vital
computations.

System programmers with unique system environments or special requirements
may find it necessary to communicate with the DSP directly from their application,
without using the provided library interface at all. For these applications, the
source code to the library is provided as a valuable example for all of the functions
provided by DiSPATCH.

However, for application programmers using a supported host operating system,
the DiSPATCH programming library probably provides the most direct path to
implementation, since most of the low-level initialization and communication func-
tions are already coded. All functions provided by the DiSPATCH firmware are
fully supported by the programming library.

The library provides an identical application interface to DiSPATCH on all sup-
ported platforms. The support software is fully interrupt-driven; the host will never

3

Do you need to use Vigra’s library and drivers? Section 2.1

use CPU time waiting or polling for responses. This allows maximum performance
and flexibility on multitasking and real-time operating systems.

Any application linked with the library contains the binary images of the
DiSPATCH firmware, making a self-contained application program. No external
files are necessary to initialize or use the DSP.

4 Vigra Rev 1.52, 2 May 1997

3. INSTALLATION

At the time of this writing, host-support packages are available for these host
platforms:

� SunOS v4.1.x (Sun Microsystems)

– Sun Sparcstation using Performance Technologies SBS-915 (PTVME)
SBus-to-VME adaptor.

– Force CPU 2CE/16 VME Sun Sparc.

– Force CPU 1E VME Sun Sparc.

– Themis SPARC 10HS (SunOS 4.1.3B HS)

– Themis SPARC 10MP (SunOS 4.1.4 + Themis VME patches)

� Solaris v2.x, SPARC (Sun Microsystems)

– Themis VME SPARC CPU (SunOS 5.5 + Themis VME driver)

– Force VME SPARC CPU (SunOS 5.4 or 5.5 + Force VME driver)

� VxWorks v5.x (Wind River Systems)

– Motorola MVME167 Single Board Computer (M68040).

– Force CPU 2CE/16 VME Sun SPARC.

� IRIX v4.0.x (Silicon Graphics Inc.)

– All SGI workstations equipped with a VMEbus.

� IRIX v5.2 (Silicon Graphics Inc.)

– All SGI workstations equipped with a VMEbus.

� OS-9 v2.4 (Microware Systems Corp.)

– Motorola MVME167 Single Board Computer (M68040).

5

SunOS v4.1.x Section 3.1

� HP-RT v1.11 (Hewlett-Packard Co.)

– HP 9000/742 target board.

� HP-UX v9.0x (Hewlett-Packard Co.)

– HP 9000 VME CPU board. (742, 743 Anole)

� HP-UX v10.xx (Hewlett-Packard Co.)

– HP 9000 VME CPU board. (742, 743 Anole)

� Motorola UNIX System V/88 Release R32V3.

– Motorola MVME-187 Single Board Computer (M88100).

While all of these platforms share a common library interface, the device driver
and installation procedure for these platforms varies significantly. Please read the
section that relates to your system environment.

The distributed file “README” contains any information that is newer than the
current revision of the DiSPATCH documentation. Please read it before proceeding
with the installation.

3.1 SunOS v4.1.x

The “dispatch/driver/sunos” directory of the DiSPATCH distribution contains
the “mmidsp” device driver for SunOS v4.1.x systems. The file “README.install”
in that directory contains a text version of these installation instructions.

If you have never installed a device driver or recompiled the SunOS kernel, addi-
tional help from a nearby guru or Vigra may be necessary. These instructions are
only a brief overview, and your system may have special requirements.

This DiSPATCH “mmidsp” device driver is responsible for the following:

� Mapping the VME board into user memory via mmap().

� Receiving DiSPATCH messages from a single DSP on the MMI board via
read().

When the user opens an mmidsp device, the driver enables interrupts and begins
handling responses from one DSP. Each incoming word is held in a queue until

6 Vigra Rev 1.52, 2 May 1997

Section 3.1 SunOS v4.1.x

read by the user process via read(). Each DSP on the MMI board gets a separate
device handle.

Note that the device driver does not initialize the DSP. It is expected to be initialized
by the user process. The user process is also responsible for all writes to the DSP
host port, which are done directly.

This driver is required by the DiSPATCH programming library.

These instructions assume the new kernel will be named “MMIDSP”. If you choose
a different name, please adjust the examples accordingly.

3.1.1 Kernel Architecture

To use this device driver, your SunOS machine must be one of the “sun4c”, “sun4m”,
or “sun4rf” architectures. If you are unsure of your architecture, run “arch -k”
and verify that it reports one of the above.

Where these instructions refer to an architecture, such as in a filename, the generic
name sun4x is used to represent sun4m, sun4c, or sun4rf. Please substitute the
name that is appropriate to your target system.

3.1.2 Installation Summary

To install the mmidsp driver, the following steps must be performed as root. Each
of these steps is explained in detail below.

1. Copy the driver source files to “/usr/kvm/sys/vigra”.

2. Verify that the driver is set for the correct mapping call.

3. Add one entry for each DSP to “/usr/kvm/sys/sun4x/conf/MMIDSP”.

4. Add the driver entry points to “/usr/kvm/sys/sun/conf.c”.

5. Add an entry for the driver to “/usr/kvm/sys/sun4x/conf/files”.

6. Run “/etc/config” to configure the new kernel.

7. Build, install, and boot the new kernel.

8. Make the device entries in the “/dev” directory.

9. Test the driver with “mmi-test”.

Rev 1.52, 2 May 1997 Vigra 7

SunOS v4.1.x Section 3.1

3.1.3 Install the Source Files

First, create a directory called “/usr/kvm/sys/vigra”. Copy these two files from
the driver distribution directory into the new directory:

vme-mmidsp.c

dsp_defs.h

3.1.4 Select the Mapping Function

Since most Sun Sparcstation machines normally have only SBus slots, third-party
vendors have developed VME extensions to the hardware and kernel. These custom
extensions determine how the mmidsp driver will map the memory on the VME
board.

The mmidsp driver requires that these kernel extensions be installed, since it uses
the “xx map()” routines provided by the computer manufacturer. If you have not
yet built a SunOS kernel to support your VME system, please do so before installing
the mmidsp driver.

Edit “vme-mmidsp.c” and uncomment the #define appropriate for your VME
system. For example, if you are using a SUN4/330, uncomment the line that reads:

/* #define SUN4_330 */

3.1.5 Create the Kernel Configuration File

To add the “mmidsp” driver to your existing kernel configuration, copy your kernel’s
configuration file to “/usr/kvm/sys/sun4x/conf/MMIDSP”.

This new configuration file will be modified to include the “mmidsp” driver.

Each MMI board installed in the VME bus requires the following entries in the
configuration file:

� One entry for the DRAM on the board.

� One entry for each DSP on the MMI board.

The exact contents of the configuration entries will vary with board models and base
addresses. Look at the files “MMIDSP.210” and “MMIDSP.420” for configuration
examples.

8 Vigra Rev 1.52, 2 May 1997

Section 3.1 SunOS v4.1.x

First, place the following line before any MMI entries to tell the config program
about the new device driver:

device-driver mmidsp

Then, make one entry for the DRAM on the board, at the base address of the board:

device mmidsp0 at vme32d32 ? csr 0x81000000

Now make one entry for each DSP on the board, at the DSP base address. You
must also list the VME interrupt priority and vector to use for each DSP. Be sure
to select a unique interrupt vector for each DSP. The DSP interrupt vectors must
not be used by any other devices.

To compute the base address of each DSP, add one of the following constants to the
VME base address of the board:

� MMI-420 and MMI-4210:
DSP A 0x3FFE80
DSP B 0x3FFEC0
DSP C 0x3FFF00
DSP D 0x3FFF40

� MMI-210 (1 meg):
DSP A 0x0FFE40
DSP B 0x0FFE80

� MMI-210 (4 meg):
DSP A 0x3FFE40
DSP B 0x3FFE80

� MMI-105 (1 meg):
DSP A 0x0FFC40

The interrupt priority is jumper-selectable, as described in the MMI Owner’s Man-
ual. The factory default setting is level 1.

A complete example configuration for an MMI-4210 (four DSPs) is as follows:

#

MMI-4210 (four DSPs) installed at base address 0x81000000, priority 1:

#

Rev 1.52, 2 May 1997 Vigra 9

SunOS v4.1.x Section 3.1

device-driver mmidsp

device mmidsp0 at vme32d32 ? csr 0x81000000

device mmidsp1 at vme32d32 ? csr 0x813FFE80 priority 1 vector mmidsp_intr 0xd0

device mmidsp2 at vme32d32 ? csr 0x813FFEC0 priority 1 vector mmidsp_intr 0xd1

device mmidsp3 at vme32d32 ? csr 0x813FFF00 priority 1 vector mmidsp_intr 0xd2

device mmidsp4 at vme32d32 ? csr 0x813FFF40 priority 1 vector mmidsp_intr 0xd3

3.1.6 Add Driver Entries to “conf.c”

The following code must be added to the first part of “/usr/sys/sun/conf.c”:

#include "mmidsp.h"

#if NMMIDSP > 0

extern int mmidsp_open(), mmidsp_close();

extern int mmidsp_read(), mmidsp_select();

extern int mmidsp_mmap();

#else

#define mmidsp_open nodev

#define mmidsp_close nodev

#define mmidsp_read nodev

#define mmidsp_select nodev

#define mmidsp_mmap nodev

#endif

Later in the same file, this code must be inserted at the end of the cdevsw[] array:

{

mmidsp_open, mmidsp_close, mmidsp_read, nodev, /*xx*/

nodev, nodev, mmidsp_select, mmidsp_mmap,

0, 0,

},

Fill in and note the major number to the right of this entry when you editcdevsw[];
this will be the major number for all mmidsp device nodes.

3.1.7 Files

To tell the kernel configuration about the location of the files “vme-mmidsp.c” and
“dsp defs.h”, edit the file “/usr/kvm/sys/sun4x/conf/files”. Some system
configurations may place this file elsewhere.

10 Vigra Rev 1.52, 2 May 1997

Section 3.1 SunOS v4.1.x

Add a line to the end of “files”, indicating where to find the MMI driver source,
relative to “/usr/sys”. If the files were copied to a “/usr/sys/vigra” directory,
add this line:

vigra/vme-mmidsp.c optional mmidsp device-driver

3.1.8 Configure the Kernel

As root, run:

/etc/config MMIDSP

from the “/usr/kvm/sys/sun4x/conf” directory to configure the new kernel.

3.1.9 Build, Install, and Boot the New Kernel

Change directory to “/usr/kvm/sys/sun4x/MMIDSP” and run “/bin/make” to
build the new kernel. Fix any compilation errors before continuing.

After making a backup copy of the old kernel, install the new kernel in the root
directory, like this:

cp /vmunix /vmunix.nommi

cp /usr/kvm/sys/sun4x/MMIDSP/vmunix /

Then reboot the machine to run the new kernel:

/etc/reboot

3.1.10 Make the Device Handles in “/dev”

Each MMI board has one or more DSPs, each of which needs its own driver handle,
since they send messages independently. Only one mapping device handle is needed
for each board, since all DSPs share a common DRAM address space.

The device handles for a two-DSP board (such as the MMI-210) are as follows:

/dev/mmidsp0_map

/dev/mmidsp0_A

/dev/mmidsp0_B

Rev 1.52, 2 May 1997 Vigra 11

SunOS v4.1.x Section 3.1

The first device (“* map”), is the mmap() handler, and is used only for memory-
mapping. There are no DSPs directly associated with this handle. Each MMI
board has one mmap() handler, whose entry in the kernel configuration file has the
base address of the board.

The remaining device handles (“* A”, “* B”,: : :) represent the DSPs on the board.
There will be one such handle for each DSP on the MMI board. These entries in
the config file use the base address of the DSP they represent.

The minor number for the device handles is simply the unit value for the corre-
sponding entry in the “config” file. For example, the first entry (mmidsp0) will
get the minor number 0. The second entry (mmidsp1) uses the minor number 1.

To create devices for the example configuration from Section 3.1.5, make the fol-
lowing device entries in “/dev” using mknod, where ’XX’ represents the major
device number for the mmidsp device.

mknod mmidsp0_map c XX 0

mknod mmidsp0_A c XX 1

mknod mmidsp0_B c XX 2

mknod mmidsp0_C c XX 3

mknod mmidsp0_D c XX 4

Be sure to set the file permissions appropriately.

3.1.11 Test the Driver

Verify that the driver is working properly by running the “mmi-test” program
in the “dispatch/apps” directory. Use the “led” command to test the firmware,
driver, and library operation.

The first argument to the “open board” command should be “MMI-210-1” for 1-
meg MMI-210 boards, “MMI-210-4” for 4-meg MMI-210 boards, or “MMI-4210” for
MMI-420/MMI-4210 models.

For example, type the following commands to turn DSP A’s LED on and off on an
MMI-4210:

% mmi-test

*** MMI Test ***

12 Vigra Rev 1.52, 2 May 1997

Section 3.2 Solaris 2.x

Interactive DiSPATCH test program.

Copyright (C) 1993 Vigra, Inc.

$Revision: 1.23 $

MMI Test: open_board MMI-4210 /dev/mmidsp0

MMI-4210 #1 is ready.

MMI-4210 #1 [DSP A]: boot

MMI-4210 #1 [DSP A]: led on

MMI-4210 #1 [DSP A]: led off

MMI-4210 #1 [DSP A]:

If the LED turned on and off correctly, the driver is operational. For more infor-
mation on the mmi-test program, see Section 5.1.

3.2 Solaris 2.x

The DiSPATCH Host Support Package for Solaris 2.x supports Sun Solaris 2.4
(SunOS 5.4) and Solaris 2.5 (SunOS 5.5). Contact Vigra for information regarding
using DiSPATCH on newer releases of Solaris. This DiSPATCH package supports
SPARC-based VME hardware platforms only.

3.2.1 Installation Summary

To install the DiSPATCH support software and “mmidsp” device driver, the follow-
ing steps must be performed as root. Each of these steps is explained in detail
below.

1. Configure and install the MMI boards.

2. Check available disk space.

3. Install the “VIGRAmmi” package from the distribution media.

4. Run “mmi-config” and configure the driver.

5. Test the driver with “mmi-test”.

Rev 1.52, 2 May 1997 Vigra 13

Solaris 2.x Section 3.2

3.2.2 Configure and Install the MMI Boards

For best results, the Solaris device driver requires that the MMI audio boards be
installed into the system before the software is loaded. If the software is installed
before the MMI hardware is in place, it will be necessary to reboot the machine
and possibly reconfigure the device driver.

Before installing the MMI VME cards, note the model number, VME base address
and interrupt priority level for each board. Make sure there are no address conflicts
between boards in the system. The MMI boards utilize the IACK line on the VME
bus, so be certain that any empty VME slots are correctly jumpered to pass IACK
through.

3.2.3 Check Available Disk Space

The Solaris DiSPATCH software package (VIGRAmmi) requires approximately 35
megabytes of disk space. Before installing the package, verify that there is ade-
quate free space on the target filesystem.

3.2.4 Install the VIGRAmmi Package

The software is distributed in standard Solaris “package” format. To install the
software, become root and use the “pkgadd” utility provided with Solaris.

To load the DiSPATCH software from tape media, use a command similar to the
following:

pkgadd -d /dev/rmt/0

If you have acquired DiSPATCH software in a single-file format, such as from
Vigra’s FTP site, use this command to install from the file:

pkgadd -d dispatch-1.80-Solaris.pkg

It may also be necessary to uncompress the file prior to installation.

To install from CD-ROM, load the CD-ROM into the system, verify that it is
mounted, and run pkgadd:

pkgadd -d /cdrom

14 Vigra Rev 1.52, 2 May 1997

Section 3.2 Solaris 2.x

Solaris will find one available package, as shown below.

The following packages are available:

1 VIGRAmmi DiSPATCH MMI Audio Support Software

(sparc) 1.80

Select package(s) you wish to process (or 'all' to process

all packages). (default: all) [?,??,q]:

Select the VIGRAmmi package to install the DiSPATCH device driver and host
support software.

To install the package in a directory other than the default “/opt”, use the -R
option with “pkgadd”. See the “pkgadd” documentation for details.

3.2.5 Driver Configuration

After the package installation has finished, it is necessary to configure the de-
vice driver to match your installed audio hardware. Solaris can not auto-detect
VME devices, so you must create a file describing your system configuration. The
“mmi-config” program is provided to assist you in making this file.

As root, run the interactive script “/opt/VIGRAmmi/mmi-config”.1 This program
will prompt for board information and create the configuration file “mmidsp.conf”
for the kernel.

For each installed board, you will need to provide the following information:

� The starting VME interrupt vector.

� The Vigra MMI model name.

� The board’s VME base address, as configured by the jumpers.

� The board’s VME interrupt priority level.

Assigning the VME Interrupt Vectors

Each DSP installed in the system requires a unique VME interrupt vector. These
will be assigned sequentially by the “mmi-config” program. The user must specify

1The pathname will be different if you specified a base directory other than the default “/opt”
during package installation.

Rev 1.52, 2 May 1997 Vigra 15

Solaris 2.x Section 3.2

the first VME vector to be allocated to the MMI boards. Please be certain that all
allocated vectors are unique to the MMI boards and not shared with any other
internal or VME systems. Vigra recommends a starting interrupt vector of 0xD0
where possible.

Selecting the board to be configured

A numbered list of MMI audio board models will be listed to the screen. To add
configuration information for a board, select the model name that corresponds to
your board. To end the configuration, enter “0”.

Entering the base VME Address of the board

Each MMI board occupies a VME address range specified by the board’s jumper
settings. The address entered into the program must match the settings on the
board. This address should be entered in hexadecimal form (i.e. 0x81000000).

Entering the VME Interrupt Priority Level of the board

Each DiSPATCH board is set to a VME Interrupt Priority Level based on the board
jumper settings. The priority level specified must match the settings on the board.
The value should be in the range of 1 to 7; the factory default setting is level 1.
Consult the MMI Owner’s Manual for information regarding changing this setting.

Confirming your selections

Once the settings for a board are entered, they will be displayed for verification. If
the information needs to be changed, enter ‘N’, and enter the correct information.
If the information is correct, enter ‘Y’, and the board’s configuration will be added
to the driver information file.

After “mmi-config” is finished, it will copy the mmidsp device driver and con-
figuration file to the kernel driver directory and load the driver into the kernel.
This should generate several messages to the system console describing the new de-
vices. If any errors are reported, stop and verify the jumper settings and backplane
configuration.

If the boards were not installed as described to “mmi-config”, power down the
system, install the MMI boards, and reboot using the “-r” option.

16 Vigra Rev 1.52, 2 May 1997

Section 3.3 Solaris 2.x

If MMI boards are added, removed or reconfigured at a later date, simply run the
“mmi-config” program again and provide the new configuration details.

3.2.6 Test the Installation

Verify that the driver is working properly by running the “mmi-test” program
in the “/opt/VIGRAmmi/apps” directory. Use the “led” command to test the
firmware, driver, and library operation.

The first argument to the “open board” command should be the board model name:
“MMI-210-1” for 1-meg MMI-210 boards, “MMI-210-4” for 4-meg MMI-210 boards,
or “MMI-4211” for that model.

For example, type the following commands to turn DSP A’s LED on and off on an
MMI-4211:

% mmi-test

*** MMI Test ***

Interactive DiSPATCH test program.

Copyright (C) 1993 Vigra, Inc.

$Revision: 1.23 $

MMI Test: open_board MMI-4211 /dev/mmidsp0

MMI-4210 #1 is ready.

MMI-4210 #1 [DSP A]: boot

MMI-4210 #1 [DSP A]: led on

MMI-4210 #1 [DSP A]: led off

MMI-4210 #1 [DSP A]:

If the front-panel LED turned on and off correctly, the driver is operational. For
more information on the mmi-test program, see Section 5.1.

Rev 1.52, 2 May 1997 Vigra 17

VxWorks Section 3.3

3.3 VxWorks

The DiSPATCH support software for VxWorks is supplied in both source and binary
object (.o) files. There is no literal “device driver” under VxWorks because modules
can attach interrupts to standard C functions.

The VxWorks DiSPATCH host support software provides calls to emulate the map-
ping and opening of the DSP under Unix. This allows the library to have very
little special code for VxWorks platforms. Most VxWorks DiSPATCH applications
should compile and run under supported Unix systems as well.

The distribution media contains three directories pertaining to VxWorks:

“dispatch/vxworks/common” This directory contains files that are shared by
all supported VxWorks targets.

“dispatch/vxworks/mv167” This directory contains source and object files that
pertain only to the Motorola MVME–167 (68040) board.

“dispatch/vxworks/sun2ce” These object and source files pertain only to the
Force SPARC CPU-2CE.

3.3.1 Building the VxWorks package

All source code for the DiSPATCH library and VxWorks support is provided with
the host support software. The pre-built modules for each supported platform are
also included, but they may need to be modified to suit your system configuration
(see Section 3.3.2).

To compile the VxWorks support software, begin by changing the current
working directory to the source directory pertaining to your target board (i.e.
“dispatch/vxworks/mv167” for the MVME–167). Then run “make” to build the
object modules for that target.

Note that the DiSPATCH Makefiles use several of the same environment variables
as the standard VxWorks development environment. These variables must be
set as per the directions given in the VxWorks documentation. Specifically, the
following variables must be set to reflect your VxWorks configuration:

VX VW BASE: The base path of the VxWorks distribution. For example, “/usr/vw”.

VX HOST TYPE: The Wind Rivers type name for your host CPU. For example,
“sun4”.

18 Vigra Rev 1.52, 2 May 1997

Section 3.3 VxWorks

See the comments near the top of the Makefiles for details concerning how the
program paths are constructed, especially if your environment uses a non-standard
VxWorks arrangement.

The VPATH feature

The included Makefiles for VxWorks make frequent use of the VPATH control vari-
able. If your “make” program does not support this feature, please configure, build
and install the free GNU “make” program, included with the software package in
the directory “dispatch/make-3.68”.

3.3.2 Configuration

Before the library can be built and loaded into VxWorks, it must be configured for
the boards installed in your system. The configuration information is contained in
a structure near the top of “dispatch/lib/sys vxworks.c”.

The definition of INTERRUPT LEVEL must reflect the interrupt priority level of all
MMI boards installed in the system. The factory default jumper setting is IRQ
level 1.

The structure mmi vx config[] contains one entry for each DSP present in the
system. MMI boards have from one to four DSPs per board, so each board may
require multiple entries in the configuration structure. An example configuration
for one MMI-4211 and one MMI-210-4 is shown below:

static struct board_desc mmi_vx_config[] =

{

/* MMI-4211 */

{ "/dev/mmidsp0_A", 0x02000000, 0xe0 },

{ "/dev/mmidsp0_B", 0x02000000, 0xe1 },

{ "/dev/mmidsp0_C", 0x02000000, 0xe2 },

{ "/dev/mmidsp0_D", 0x02000000, 0xe3 },

/* MMI-210-4 */

{ "/dev/mmidsp1_A", 0x02400000, 0xe4 },

{ "/dev/mmidsp1_B", 0x02400000, 0xe5 },

}

Each configuration entry in this structure has three parts:

Rev 1.52, 2 May 1997 Vigra 19

VxWorks Section 3.3

Device filename: Applications that use the DiSPATCH library refer to each DSP
by a symbolic name. This is equivalent to the “device node” filename under
Unix. A standard device name for a DiSPATCH DSP is “/dev/mmidsp0 B”.
This specifies the second DSP (B) on the first “mmidsp” board installed (0).

Each DSP must have a unique name. The actual name is arbitrary, but
using the standard naming structure from Unix will allow for application
compatibility.

Board base address: This is the physical VME base address for the MMI board,
as set by the on-board jumpers. All DSPs on one MMI board share a common
base address.

It is important that the MMI board be configured to an address that is acces-
sible by the VxWorks kernel as an A32/D32 VMEbus region. By default, the
VxWorks kernel contains only one small VME window. The default ranges
are listed below:

Force CPU-2CE 0x00000000 - 0x00FFFFFF
MVME–167 0x02000000 - 0x02FFFFFF

The jumpers on the MMI board must be configured to locate the board within
the allowed address range. Alternatively, the default VME mappings in the
kernel can be modified and recompiled to allow other address ranges. Consult
the VxWorks documentation for details on rebuilding the kernel.

VME interrupt vector: Each DSP must be assigned a unique interrupt vector
number that is not shared with any other VME devices.

When the configuration structure has been edited to reflect your system environ-
ment, the VxWorks program files must be recompiled.

To rebuild the code, go into the directory pertaining to your VxWorks target CPU
board and run the command “make” (see Section 3.3.1). If the build is successful,
there will be no errors or warnings and the directory will contain the new object
files.

3.3.3 The Included Object Files

All of the DiSPATCH host application support is contained in the module
“VX-libmmi.o”. This file contains the DiSPATCH library, VxWorks interface,

20 Vigra Rev 1.52, 2 May 1997

Section 3.3 VxWorks

and firmware binaries for all MMI boards. This module must be loaded before any
DiSPATCH applications can be run.

Several other modules are provided which are not part of the library, but may prove
useful to the application designer:

“VX-test.o” This module provides the external function mmi test(). Calling
this function from the shell will run the interactive MMI-Test program. See
Section 3.3.4.

“VX-play.o” This module supplies the external function play(). This is an ex-
ample function that uses the DiSPATCH library to play an audio file. Several
global variables control the operation of the play() function. Call the routine
play usage() for a list of the relevant variables and their current settings.

“VX-beep.o” This is very simple module to generate a short tone on the MMI
board. The external routine is called beep(). The function beep() is usually
invoked directly from the VxWorks shell as a diagnostic function. An example
invocation is:
beep ("MMI-4211", "/dev/mmidsp0", 0)
The arguments are, in order:

Model name: A string name for the MMI model (i.e. “MMI-4211”).

Device name: A string device name specifying the MMI board to use (i.e.
“/dev/mmidsp0”).

Channel: An integer value indicating which DSP on the board to use (i.e.
“0” for DSP A).

3.3.4 Testing the Audio System

After DiSPATCH has been installed in the VxWorks system, some simple diagnos-
tics should be run to verify that the board is correctly installed and the system is
properly configured.

Call “mmi show config()”

Begin by calling the diagnostic function mmi show config() from the VxWorks
shell. This routine will list all the DSPs currently configured into the DiSPATCH
library. If this list does not match the intended configuration, verify that the
contents of the “sys vxworks.c” configuration structure is correct. If any entries

Rev 1.52, 2 May 1997 Vigra 21

VxWorks Section 3.4

in the “Virtual Addr” column show “None” or the “Probe” column lists “Fail!”,
then the system is not configured properly and will not work.

Note that the Force Sun-2CE does not probe the VMEbus reliably and may show
“OK” when the board is not actually installed. This is a known VxWorks problem
that may be resolved in future releases.

Run “mmi test()”

An interactive interface to DiSPATCH is provided in the module “VX-test.o”.
This module provides the external routine mmi test(). Call this function from
the shell to invoke the test program.

By executing a few commands, you can initialize the MMI board, boot a DSP,
execute a few DiSPATCH commands, and close the board. An example dialogue
to blink a front-panel LED is shown below. Be sure to use the correct model type
name for your installation (“MMI-4211” is used in the example).

-> ld < VX-libmmi.o

value = 16260912 = 0xf81f30

-> ld < VX-test.o

value = 16360892 = 0xf9a5bc

-> mmi_test

*** MMI Test ***

Interactive DiSPATCH test program.

Copyright (C) 1993 Vigra, Inc.

$Revision: 1.23 $

MMI Test: open_board MMI-4211 /dev/mmidsp0

MMI-4210 #1 is ready.

MMI-4210 #1 [DSP A]: boot

MMI-4210 #1 [DSP A]: led on

MMI-4210 #1 [DSP A]: led off

MMI-4210 #1 [DSP A]:

22 Vigra Rev 1.52, 2 May 1997

Section 3.4 IRIX v4.0.x

3.4 IRIX v4.0.x

The “dispatch/driver/sgi” directory of the DiSPATCH distribution the device
driver for SGI systems running IRIX v4.0.x.

This device driver is responsible for the following:

� Mapping the VME board into user memory via mmap().

� Receiving DiSPATCH messages from a single DSP on the MMI board via
read().

When the user opens an mmidsp device, the driver enables interrupts and begins
handling responses from one DSP. Each incoming word is held in a queue until
read by the user process via read(). Each DSP on the MMI board gets a separate
device handle.

Note that the device driver does not initialize the DSP. It is expected to be initialized
by the user process. The user process also writes to the DSP host port directly.

This driver is required by the DiSPATCH programming library.

3.4.1 Installation

To install the mmidsp driver, the following steps must be performed as root. Each
of these steps is explained in detail below.

1. Build the driver binary “mmidsp.o” or use the one provided.

2. Copy the driver binary into “/usr/sysgen/boot”.

3. Edit the “system.mmidsp” file and append it to “/usr/sysgen/system”.

4. Copy the “mmidsp” file into “/usr/sysgen/master.d”.

5. Rebuild the kernel.

6. Boot the new kernel.

7. Create the device nodes.

8. Test the driver with “mmi-test”.

Rev 1.52, 2 May 1997 Vigra 23

IRIX v4.0.x Section 3.4

3.4.2 Building the Driver

A compiled binary for the device driver is provided with the source code. If
possible, this binary should be used as-is. The filename is “mmidsp.o” in the
“dispatch/driver/sgi” directory.

However, if it is necessary to recompile the device driver the source files are included
as “sgi-mmidsp.c” and “dsp-defs.h”. The Makefile will rebuild the binary if
necessary.

3.4.3 Install the Driver Binary

The binary file named “mmidsp.o” from Section 3.4.2 must be copied into the
directory “/usr/sysgen/boot” for inclusion into the kernel.

3.4.4 VME Vector Configuration

The file “/usr/sysgen/system” contains the kernel configuration information for
VME devices. This file describes the VME address, interrupt priority, and interrupt
vector of the MMI board.

Example entries are included in “mmi210.system” and “mmi420.system” for the
MMI-210-1 and MMI-4211/MMI-4210 audio boards, respectively. Use these files
as guidelines for your own configuration.

You must add one VECTOR line to “/usr/sysgen/system” for each DSP present
on the system. Each installed MMI-210 has two DSPs, while an MMI-420 has four.

An example VECTOR entry is shown below:

VECTOR: module=mmidsp vector=0xd0 ipl=1 unit=0 base=0xDB000000 base2=0xDB0FFE80

module: This name must be “mmidsp” because this is the name of the driver.

vector: This can be any available (unused) VME interrupt vector. Vectors 0xd0
through 0xdf are reserved by SGI for customer boards. Each VECTOR line
MUST have its own interrupt vector value. No interrupt vector sharing is
allowed.

ipl: This value should reflect the Interrupt Priority Level jumper setting on the
MMI board. The boards are shipped with a default setting of 1.

24 Vigra Rev 1.52, 2 May 1997

Section 3.4 IRIX v4.0.x

unit: The first mmidsp entry must be unit number zero, and each following entry
should increment this value. Every entry must have a unique unit number,
and there should be no skipped values.

base: This is the kernel address of the MMI board. It is computed based on
the VME physical address. All DSPs on one MMI board share the same
“base” value. This VME physical address is jumper-selectable. See the MMI
User’s Manual for details on the jumper settings. Read the information
in “/usr/sysgen/system” for details on computing the SGI kernel base
address from the VME physical address.

base2: This is the Host Port address of each DSP. Each DSP (and VECTOR entry)
has a unique base2 address. The DSP base address (base2) is the VME base
address plus a constant offset. The offset of each DSP is listed below. See the
“Hardware Definitions” chapter of the DiSPATCH User’s Manual for details.

� MMI-420 and MMI-4210:
DSP A 0x3FFE80
DSP B 0x3FFEC0
DSP C 0x3FFF00
DSP D 0x3FFF40

� MMI-210 (1 meg):
DSP A 0x0FFE40
DSP B 0x0FFE80

� MMI-210 (4 meg):
DSP A 0x3FFE40
DSP B 0x3FFE80

� MMI-105 (1 meg):
DSP A 0x0FFC40

3.4.5 The Driver Configuration File

The device driver configuration file is provided as “mmidsp”. This file defines the
device major number to be “61” by default. If this major number is already in use
on your system, set the value in this file to be one that is not used. Do not edit
anything else in this file.

Copy the “mmidsp” file into the “/usr/sysgen/master.d” directory.

Rev 1.52, 2 May 1997 Vigra 25

IRIX v4.0.x Section 3.4

3.4.6 Rebuild the Kernel

The kernel must now be recompiled to include the new mmidsp driver. As root,
execute the following command:

/etc/autoconfig -f

This recompiles and installs the new kernel.

3.4.7 Boot the New Kernel

Reboot the system to begin using the new kernel. This can be done with the
“reboot” command or “init 6”.

3.4.8 Create Device Nodes

To access the driver, there must be device descriptor files in the “/dev” di-
rectory. The major number for these device files is the one assigned in
“/usr/sysgen/master.d/mmidsp”. The minor number for each device is the
same as the unit number defined on the VECTOR line of “/usr/sysgen/system”.

The device file names are of the format “mmidsp%d %c”, where the number indicates
which MMI board, and the letter (A, B, C, or D) indicates which DSP on the board.
For example, “mmidsp0 A” represents DSP A on the first MMI board. This device
would have unit number zero. “mmidsp0 B” is DSP B on the first board, and has
unit number 1. The second MMI board (if any) would have names beginning with
“mmidsp1 ”.

For example, to create device entries for the example configuration given in
“mmi420.system” and “mmidsp”, make the following device entries in “/dev” us-
ing mknod. The major number here is 61, as defined in “mmidsp”.

mknod /dev/mmidsp0_A c 61 0

mknod /dev/mmidsp0_B c 61 1

mknod /dev/mmidsp0_C c 61 2

mknod /dev/mmidsp0_D c 61 3

In addition, there must be an “mmidsp0 map” device. This device is used by the
library to map the board into user space. On SGI systems, this device is identical
to that named “mmidsp0 A”. To create it, use the following link command:

26 Vigra Rev 1.52, 2 May 1997

Section 3.5 IRIX v4.0.x

ln /dev/mmidsp0_A /dev/mmidsp0_map

All told, there should be one device entry for each DSP, and one “* map” entry
for each MMI board. Be sure to set the file permissions appropriately for your
environment. For unrestricted access to the audio boards, use this command:

chmod 666 /dev/mmidsp*

3.4.9 Test the Driver

Verify that the driver is working properly by running the “mmi-test” program
in the “dispatch/apps” directory. Use the “led” command to test the firmware,
driver, and library operation.

The first argument to the “open board” command should be “MMI-210-1” for 1-
meg MMI-210 boards, “MMI-210-4” for 4-meg MMI-210 boards, or MMI-4210 for
MMI-420/MMI-4210 models.

For example, type the following commands to turn DSP A’s LED on and off on an
MMI-4210:

% mmi-test

*** MMI Test ***

Interactive DiSPATCH test program.

Copyright (C) 1993 Vigra, Inc.

$Revision: 1.23 $

MMI Test: open_board MMI-4210 /dev/mmidsp0

MMI-4210 #1 is ready.

MMI-4210 #1 [DSP A]: boot

MMI-4210 #1 [DSP A]: led on

MMI-4210 #1 [DSP A]: led off

MMI-4210 #1 [DSP A]:

Rev 1.52, 2 May 1997 Vigra 27

IRIX v5.2 Section 3.5

3.5 IRIX v5.2

The “dispatch/driver/irix-5” directory of the DiSPATCH distribution con-
tains the “MMIDSP” device driver for SGI systems running IRIX Release 5.2 and
compatible versions. Most filenames mentioned below are in this directory.

This device driver is responsible for the following:

� Mapping the VME board into user memory via mmap().

� Receiving DiSPATCH messages from each DSP on the MMI board viaread().

When the user opens an mmidsp device, the driver enables interrupts and begins
handling responses from one DSP. Each incoming word is held in a queue until
read by the user process via read(). Each DSP on the MMI board gets a separate
device handle.

Note that the device driver does not initialize the DSP. It is expected to be initialized
by the user process. The user process also writes to the DSP host port directly.

This driver is required by the DiSPATCH programming library.

3.5.1 Installation

To install the mmidsp driver, the following steps must be performed as root. Each
of these steps is explained in detail below.

1. Select an unused major number.

2. Edit “mmidsp.sm” to reflect your system hardware configuration.

3. Build and install the driver using make.

4. Create the device handles.

5. Rebuild the kernel.

6. Boot the new kernel.

7. Test the driver with “mmi-test”.

28 Vigra Rev 1.52, 2 May 1997

Section 3.5 IRIX v5.2

3.5.2 Select a Major Number

The mmidsp device driver requires a unique character device major number. Find
an unused major number by checking the “/dev” directory. The preconfigured
number, 61, is not used by standard Irix 5.2 system and is probably available for
use by mmidsp.

If you select a major number other than 61, edit the definition of MAJOR in
“dispatch/driver/irix-5/Makefile” to reflect your chosen number. Also edit
“master.mmidsp” to use the same number.

3.5.3 Configure “mmidsp.sm” for your MMI boards

The file “/dispatch/driver/irix-5/mmidsp.sm” contains the kernel config-
uration information for MMI boards. It describes the VME address, interrupt
priority, and interrupt vector of each board and must match the hardware settings.

You must have one VECTOR line in “mmidsp.sm” for each DSP present on the
system. Each installed MMI-210 has two DSPs, while an MMI-4211 has four.
After the DSP entries, you must have one VECTOR line for the RAM space on each
board. For example, an MMI-4211 will have one VECTOR for each of:

� DSP A

� DSP B

� DSP C

� DSP D

� RAM Space (4 Megabytes)

Example entries are included in “mmidsp.sm” for the MMI-4211 and MMI-210-4
audio boards. Use these listings as guidelines for your own configuration.

An example VECTOR entry for a DSP is shown below. Note that the entire entry
must be on one continuous line in the file.

VECTOR: bustype=VME module=mmidsp adapter=0 ipl=1 ctlr=0 iospace=(A32NP,

0x153ffe80,0x40) probe_space=(A32NP,0x153ffe80,1)

bustype: This will always be “VME”, since all MMI boards plug into the VME bus.

Rev 1.52, 2 May 1997 Vigra 29

IRIX v5.2 Section 3.5

module: This name must be “mmidsp” because this is the name of the driver.

adapter: This describes which VMEbus the kernel is to use. Most systems have
only one VMEbus, so this value is usually 0.

ipl: This value should reflect the Interrupt Priority Level jumper setting on the
MMI board. The boards are shipped with a default setting of 1. The VECTOR
entry for the RAM space contains no ipl field, since it doesn’t use interrupts.

ctlr: The first VECTOR entry must be unit number zero, and each following entry
should increment this value. Every entry must have a unique ctlr number,
and there should be no skipped values. Note that the DSP entries must come
before the RAM entry, as shown in the example configurations.

iospace: This declares the VME memory region (space, address, and length) of
the RAM or DSP entry. Use A32NP for the VME space (first value) for all
VECTOR lines.

The addresses are determined by the jumper settings, and fixed offsets. See
the MMI User’s Manual for details on the jumper settings.

For the RAM VECTOR entry, the address and size reflect the physical VME
base address and total size of the board, respectively. For example, any four-
megabyte board would have one VECTOR with an iospace defined like this:
“iospace=(A32NP,0x15000000,0x400000)”.

For each DSP VECTOR entry, the definition of iospace declares the VME
base address and size of each DSP host port. The size (third value) is always
0x40, and the DSP base address (second value) is the VME base address plus
a constant offset. The offset of each DSP is listed below. See the “Hardware
Definitions” chapter of the DiSPATCH User’s Manual for details.

� MMI-420 and MMI-4210:
DSP A 0x3FFE80
DSP B 0x3FFEC0
DSP C 0x3FFF00
DSP D 0x3FFF40

� MMI-210 (1 meg):
DSP A 0x0FFE40
DSP B 0x0FFE80

� MMI-210 (4 meg):
DSP A 0x3FFE40
DSP B 0x3FFE80

30 Vigra Rev 1.52, 2 May 1997

Section 3.5 IRIX v5.2

� MMI-105 (1 meg):
DSP A 0x0FFC40

probe space: This specifies the VME region to be probed during boot. The first
two values (space and address) should be the same as those in iospace
definition. The third value, length, should always be 1.

3.5.4 Build and Install the Driver

As root, execute make in the “dispatch/driver/irix-5” directory to compile
the driver code and copy all configuration files into the standard system directories
There should be no warnings or errors during the execution of make.

Alternatively, you may study the Makefile and perform the tasks manually as
root.

3.5.5 Create the Device Handles

There must be one device file in “/dev” for each VECTOR entry in “mmidsp.sm”.
For single-board installations, the makefile provides two targets to help create
these entries.

As root, execute “make devs-4” if you have one quad-DSP board installed, or
“make devs-2” if you have an MMI-210 model installed.

Be sure to set the file permissions appropriately for your environment. For unre-
stricted access to the audio boards, use this command:

chmod 666 /dev/mmidsp*

Multiple Boards Installed in One System

If you have more than one board in a single system, you must create additional
device handles by hand. Continue as shown in the makefile, creating one device
node for each VECTOR defined in “mmidsp.sm”. The minor number for each device
is the same as the ctlr number defined on the VECTOR line.

The device file names are of the format “mmidsp%d %c”, where the number indicates
which MMI board, and the letter (A, B, C, or D) indicates which DSP on the board.
For example, “mmidsp0 A” represents DSP A on the first MMI board. This device
would have ctlr number zero. “mmidsp0 B” is DSP B on the first board, and has

Rev 1.52, 2 May 1997 Vigra 31

IRIX v5.2 Section 3.5

ctlr number 1. The second MMI board (if any) would have names beginning with
“mmidsp1 ”.

All told, there should be one device entry for each DSP, and one “* map” entry for
each MMI board.

3.5.6 Rebuild the Kernel

The kernel must now be recompiled to include the new mmidsp driver. As root,
execute the following command:

/etc/autoconfig -f

This recompiles and installs the new kernel.

3.5.7 Boot the New Kernel

Reboot the system to begin using the new kernel. This can be done with the
“reboot” command or “init 6”.

3.5.8 Test the Driver

Verify that the driver is working properly by running the “mmi-test” program
in the “dispatch/apps” directory. Use the “led” command to test the firmware,
driver, and library operation.

The first argument to the “open board” command should be “MMI-210-1” for 1-
meg MMI-210 boards, “MMI-210-4” for 4-meg MMI-210 boards, or “MMI-4211” for
the MMI-4211 model.

For example, type the following commands to turn DSP A’s LED on and off on an
MMI-4211:

% mmi-test

*** MMI Test ***

Interactive DiSPATCH test program.

Copyright (C) 1993 Vigra, Inc.

$Revision: 1.23 $

32 Vigra Rev 1.52, 2 May 1997

Section 3.6 OS-9

MMI Test: open_board MMI-4211 /dev/mmidsp0

MMI-4211 #1 is ready.

MMI-4211 #1 [DSP A]: boot

MMI-4211 #1 [DSP A]: led on

MMI-4211 #1 [DSP A]: led off

MMI-4211 #1 [DSP A]:

3.6 OS-9

DiSPATCH supports version 2.4 of the OS-9 operating system from Microware
Systems Corp. The source code and makefiles require that the Ultra-C compiler
(v1.1.2 or newer) be installed on the development system as the default compiler.

3.6.1 Functional Overview

Each DSP in the DiSPATCH system has two controlling processes:

� A system-state daemon process to receive and process messages.

� The user-state application process to process audio data.

System-State daemon

Before any applications can use the DiSPATCH library, one system-state daemon
must be running for each DSP to be used. Each daemon handles the VME inter-
rupts and incoming messages for one DSP. These processes are usually executed
from the system startup file, and run in the background at all times. They remain
dormant until the DSPs become active.

The system-state process is managed by the program “os9 mmidsp”, located in
the “dispatch/apps” directory. This program is built by the included makefiles
and made system-state automatically. For this reason, “make” must be run by the
super-user, or the system-state attribute will not be set.

Rev 1.52, 2 May 1997 Vigra 33

OS-9 Section 3.6

The “os9 mmidsp” process takes the place of the “device driver” used on Unix-like
platforms. All incoming messages are handled by the process, while the application
and library perform all DSP control operations.

User-state application

The user-state application is responsible for initializing and controlling the op-
eration of the DiSPATCH DSPs. Most applications should be written to use the
high-level control functions provided by the DiSPATCH Programming Library.
Each application connects to a “os9 mmidsp” process to receive messages from the
DSP.

3.6.2 Installation

To install the DiSPATCH package, the following steps must be performed as super-
user. Each of these steps is explained in detail below.

1. Extract the files from the distribution media.

2. Configure the source files by running “make configure”.

3. Build the library and applications by running “make”.

4. Add the “os9 mmidsp” processes to the system startup file.

5. Reboot the OS-9 system.

6. Test the DiSPATCH system with the provided applications.

3.6.3 Extract DiSPATCH files

The DiSPATCH files are shipped in OS-9 “fsave” format. To extract the files,
change to a directory (using “chd”) in which you have write permission. Execute
the following command to automatically extract the tree from the default tape
device to the current directory:

frestore -s

34 Vigra Rev 1.52, 2 May 1997

Section 3.6 OS-9

This will create the top-level directory called “dispatch” and place all files within
it. To specify an alternate tape device or to control other “frestore” options,
please consult the Microware OS-9 manuals.

At this time, please read the file named “dispatch/README” for any special infor-
mation not included in the latest version of the documentation.

3.6.4 Configuration

Before building the DiSPATCH source files, two files must be created to describe
the hardware configuration of your system. These two files are the daemon
startup script (“apps/mmi startup”) and the library hardware configuration file
(“lib/sys os9 config.c”).

Both of these files are created automatically by the interactive “configure” pro-
gram in the “dispatch/config” directory. To build and run this program, run
“make configure” from the top-level “dispatch” directory.

If the program builds successfully, it will run and prompt for board information.
For each installed board, you will need to know the following:

� The Vigra MMI model name.

� The board’s VME base address, as configured by the jumpers.

� The board’s VME interrupt priority level.

Each DSP installed in the system requires a unique VME interrupt vector. These
will be assigned sequentially by the “configure” program. The user must specify
the first VME vector to be allocated to the MMI boards. Please be certain that
all allocated vectors are unique to the MMI boards and not shared with any other
internal or VME systems. Vigra recommends a starting interrupt vector of 0xE0
where possible.

Note that the MMI board must be located in an un-cached region of VME space.
It is not presently possible to use any MMI board with kernel caching, since both
the DSP and the host CPU will modify DRAM. Consult the OS-9 documentation
for information on how to designate some or all of VME space as un-cached.

3.6.5 Compile All Source Files

As the super-user, run “make” from the top level “dispatch” directory. This will
compile the DiSPATCH library and all provided applications. Note that this may

Rev 1.52, 2 May 1997 Vigra 35

OS-9 Section 3.6

take as long as several hours.

There should be no warnings or errors reported during the compilation. If any are
encountered, there is likely to be a problem with the installation, and the error
should be corrected before proceeding.

3.6.6 Edit the System Startup File

Before any DiSPATCH applications can be run, there must be one “os9 mmidsp”
process running for each installed DSP. The “configuration” program cre-
ates a script file called “mmi startup” in the “apps” directory that loads the
“os9 mmidsp” module and spawns the necessary processes.

The system “startup” file for OS-9 should be used to automatically load the dae-
mon processes by executing “mmi startup”. This will ensure that the necessary
processes are always present after booting.

3.6.7 Reboot the System

Reboot the OS-9 system and verify that the “startup” script correctly executes
“mmi startup”, and that all the daemon processes start correctly.

3.6.8 Test the Package

Verify that the DiSPATCH system is working properly by running the “mmi test”
program in the “dispatch/apps” directory. Use the “led” command to test the
firmware, driver, and library operation. See Section 5.1 for more information on
using the “mmi test” program.

The first argument to the “open board” command should be “MMI-210-1” for 1-
meg MMI-210 boards, “MMI-210-4” for 4-meg MMI-210 boards, or “MMI-4211” for
MMI-420/MMI-4211 models.

For example, type the following commands to turn the green LED on and off on an
MMI-210-4:

$ mmi_test

*** MMI Test ***

Interactive DiSPATCH test program.

36 Vigra Rev 1.52, 2 May 1997

Section 3.7 HP-RT

Copyright (C) 1993 Vigra, Inc.

$Revision: 1.23 $

MMI Test: open_board MMI-210-4 /dev/mmidsp0

MMI-4210 #1 is ready.

MMI-4210 #1 [DSP A]: boot

MMI-4210 #1 [DSP A]: led on

MMI-4210 #1 [DSP A]: led off

MMI-4210 #1 [DSP A]:

3.7 HP-RT

The directory “dispatch/driver/hp-rt” contains DiSPATCH support for ver-
sion 1.11 of the HP-RT operating system from Hewlett-Packard Co.

Before attempting to add the DiSPATCH device driver to your HP-RT system,
please verify that you can build and boot a new HP-RT kernel without the driver.
These instructions assume a working knowledge of HP-RT system administration.
Consult the HP documents titled HP-RT System Administration Tasks (B3127-
90005) and Driver Writing in the HP-RT Environment (B3127-90006) for additional
information.

3.7.1 Installation

To install the DiSPATCH package, the following steps must be performed. Each of
these steps is explained in detail below.

1. Extract the files from the distribution media.

2. Verify the HPRTroot environment variable setting.

3. Allocate interrupt levels to HP-RT.

4. Configure the DiSPATCH device driver.

5. Add the driver to the HP-RT kernel configuration.

Rev 1.52, 2 May 1997 Vigra 37

HP-RT Section 3.7

6. Build a new HP-RT kernel.

7. Build the library and sample applications.

8. Reboot the HP-RT system using the new kernel.

9. Test the DiSPATCH system with the provided applications.

3.7.2 Extract the DiSPATCH Files

The DiSPATCH files are shipped in “tar” format. To extract the distribution, cd
to a directory where you have write permission, and run “tar -xv”. It may also be
necessary to explicitly specify the name of your local tape device on the command
line.

This will create the “dispatch” directory tree and all required source files.

3.7.3 The HPRTroot Environment Variable

The DiSPATCH device driver “Makefile” uses the current value of the HPRTroot
environment variable. It is important that this variable be set correctly before
building the DiSPATCH device driver.

This variable must point to the location of the HP-RT file system’s root direc-
tory on the HP-UX host system (usually “/HP-RT”). No default is assumed by the
DiSPATCH Makefiles.

3.7.4 Interrupt Level Allocation

Each of the seven VMEbus interrupt levels can be assigned to either the HP-RT
target system or the HP-UX host system. An interrupt level can not be assigned
to both systems at once.

Before installing and configuring the MMI boards, you much choose one or more in-
terrupt levels and assign them to the HP-RT system. The factory-default interrupt
level for MMI boards is 1. This can be changed via the on-board jumper settings.
Consult the MMI owner’s manual for available jumper configurations.

38 Vigra Rev 1.52, 2 May 1997

Section 3.7 HP-RT

HP-UX Configuration

Verify that the interrupts are allocated correctly in the file “/etc/vme/vme.CFG”
on the HP-UX host system. The MMI interrupt request line should be assigned to
the hp742rt processor.

If any changes are made to “vme.CFG”, run “/etc/vme config” and reboot the
HP-UX system to make the changes take effect.

HP-RT Configuration

On the HP-RT system, the file “$HPRTroot/usr/include/machine/sysdev.h”
defines the VME interrupt allocation.

Find the definition of VME INT x CPU, where x is the interupt level used by the MMI
board(s). Make sure that this symbol is defined to be the HP-RT CPU number so
that it can claim that interrupt level. For example, if the MMI boards are using
VME interrupt level 1, and the HP-RT CPU number is 1, this line should appear
in the “sysdev.h” file:

#define VME_INT_1_CPU 1

Later in that same file, change the definition of HI VME x from 0 to 0xFF to allow
multiple interrupt vectors on that level. For example, this line should be used for
interrupt level 1:

#define HI_VME_1 0xFF /* Highest return id for VME level 1 interrupts */

Also, make sure that the value of VME IACK MODE VALUE does not include
VME FAST IACK x. This will instruct the HP-RT kernel to use a second-level inter-
rupt vector table as required.

Consult the HP-RT System Administration Tasks manual for more information on
interrupt allocation under HP-RT.

3.7.5 Driver Configuration

Before building the DiSPATCH device driver, two files must be created to de-
scribe the hardware configuration of your system. These two files are the
MMIDSP kernel data structures (“mmidsp info.c”) and the kernel configuration
file (“mmidsp.cfg”).

Rev 1.52, 2 May 1997 Vigra 39

HP-RT Section 3.7

Both of these files are created automatically by running the supplied interactive
“configure” program. To build and run this program, type “make configure”
from within the “dispatch/driver/hp-rt” directory.

If the program builds sucessfully, it will run and prompt for board information. For
each installed board, you will need to provide the following information:

� The Vigra MMI model name.

� The board’s VME base address, as configured by the jumpers.

� The board’s VME interrupt priority level.

Each DSP installed in the system requires a unique VME interrupt vector. These
will be assigned sequentially by the “configure” program. The user must specify
the first VME vector to be allocated to the MMI boards. Please be certain that
all allocated vectors are unique to the MMI boards and not shared with any other
internal or VME systems. Vigra recommends a starting interrupt vector of 0xE0
where possible.

3.7.6 Add the Driver

To make the DiSPATCH (mmidsp) driver part of the HP-RT kernel, edit the file
“$HPRTroot/etc/conf/cfg/CONFIG.TBL” and add these lines to the end:

##

mmidsp device driver for Vigra DSP audio boards.

##

I:mmidsp.cfg

3.7.7 Build a New HP-RT Kernel

As the super-user, go to the “dispatch/driver/hp-rt” directory and run “make
kernel”. This will compile the DiSPATCH driver and build a new HP-RT kernel.

If any errors are encountered during compilation, there is likely to be a problem
with the installation, and the error should be corrected before proceeding.

3.7.8 Build the Library and Applications

The DiSPATCH library and sample applications are provided in C source form.
They must be compiled on the HP-UX host system for the HP-RT target.

40 Vigra Rev 1.52, 2 May 1997

Section 3.7 HP-RT

To build the provided library and applications, go to the top-level “dispatch”
distribution directory on the HP-UX host and run:

make all

No warnings or errors should be reported during the compilation. If any errors are
detected, they should be resolved before continuing with the installation.

3.7.9 Reboot the System

Reboot the HP-RT system and verify that the new kernel is executing correctly.
During startup, the kernel should print a Vigra copyright message and state the
number of DiSPATCH DSPs configured into the system, as shown below.

Vigra MMIDSP driver installed. Copyright (C) 1994, Vigra.

HP-RT kernel configured for 4 Vigra audio DSPs.

3.7.10 Test the Package

Verify that the DiSPATCH system is working properly by running the “mmi-test”
program in the “dispatch/apps” directory. Use the “led” command to test the
firmware, driver, and library operation. See Section 5.1 for more information on
using the “mmi-test” program.

The first argument to the “open board” command should be “MMI-210-1” for 1-
meg MMI-210 boards, “MMI-210-4” for 4-meg MMI-210 boards, or “MMI-4211” for
MMI-420/MMI-4211 models.

For example, type the following commands to turn the red LED on and off on an
MMI-4211:

$./mmi-test

*** MMI Test ***

Interactive DiSPATCH test program.

Copyright (C) 1993 Vigra, Inc.

$Revision: 1.23 $

MMI Test: open_board MMI-4211 /dev/mmidsp0

Rev 1.52, 2 May 1997 Vigra 41

HP-UX 9.0.x Section 3.8

MMI-4211 #1 is ready.

MMI-4211 #1 [DSP A]: boot

MMI-4211 #1 [DSP A]: led on

MMI-4211 #1 [DSP A]: led off

MMI-4211 #1 [DSP A]:

3.8 HP-UX 9.0.x

The directory “dispatch/driver/hp-ux9” contains DiSPATCH support for ver-
sion 9.0.x of the HP-UX operating system from Hewlett-Packard Co.

Before attempting to add the DiSPATCH device driver to your HP-UX system,
please verify that you can build and boot a new HP-UX kernel without the driver.
These instructions assume a working knowledge of HP-UX system administration
and kernel manipulation. Consult the Hewlett-Packard system administration
manuals for additional information.

3.8.1 Installation

To install the DiSPATCH package, the following steps must be performed. Each of
these steps is explained in detail below.

1. Extract the files from the distribution media.

2. Configure the MMI board jumpers.

3. Allocate interrupt levels to HP-UX.

4. Configure the DiSPATCH device driver.

5. Add the driver to the HP-UX “master” file.

6. Add the driver to the HP-UX “dfile”.

7. Build a new HP-UX kernel.

8. Install the new HP-UX kernel.

42 Vigra Rev 1.52, 2 May 1997

Section 3.8 HP-UX 9.0.x

9. Build the library and sample applications.

10. Reboot the HP-UX system using the new kernel.

11. Make the device handles.

12. Test the DiSPATCH system with the provided applications.

3.8.2 Extract the DiSPATCH Files

The DiSPATCH files are shipped in “tar” format. To extract the distribution, cd
to a directory where you have write permission, and run “tar -xv”. It may also be
necessary to explicitly specify the name of your local tape device on the command
line.

This will create the “dispatch” directory tree and all required source files. The top-
level directory name will also contain the current DiSPATCH release number, as
in “dispatch-1.60”. Please read the file named “RELEASE” for any supplemental
instructions.

3.8.3 Configure your new MMI board

To install the DiSPATCH device driver, you will need to know the settings of each
MMI board installed in your HP-UX system. These values are:

1. The VME base address.

2. The VME interrupt priority level.

The VME base address and interrupt priority level are set via jumpers on the MMI
board. Please choose settings that do not conflict with other boards or system
hardware.

3.8.4 Interrupt Level Allocation

Each of the seven VMEbus interrupt levels can be assigned to one HP processor
board. An interrupt level can not be assigned to multiple systems at once.

Before installing and configuring the MMI boards, you much choose one or more
interrupt levels and assign them to the HP-UX system. The factory-default in-
terrupt level for MMI boards is 1. This can be changed via the on-board jumper
settings. Consult the MMI owner’s manual for available jumper configurations.

Rev 1.52, 2 May 1997 Vigra 43

HP-UX 9.0.x Section 3.8

Verify that the interrupts are allocated correctly in “/etc/vme/vme.CFG” on the
HP-UX host system. If you have multiple CPU boards in the same VMEbus, the
MMI interrupt request line should be assigned to the HP-UX processor only.

If any changes are made to “vme.CFG”, use “/etc/vme config” and reboot the
HP-UX system to make the changes take effect.

If an HP-RT target system shares the same VMEbus as the HP-UX host,
verify that the interrupt assignment does not conflict with those defined in
“$HPRTroot/usr/include/machine/sysdev.h”. Consult the HP-RT System
Administration Tasks manual for more information on interrupt allocation under
HP-RT.

3.8.5 Driver Configuration

Before building the DiSPATCH device driver, the file “mmidspinfo.c” must be
created to describe the hardware configuration of your system.

This file is created automatically by running the interactive “configure” pro-
gram. To build and run this program, type “make config” from within the
“dispatch/driver/hp-ux9” directory.

If the program builds successfully, it will run and prompt for board information.
For each installed board, you will need to provide the following information:

� The starting VME interrupt vector.

� The Vigra MMI model name.

� The board’s VME base address, as configured by the jumpers.

� The board’s VME interrupt priority level.

Assigning the VME Interrupt Vectors

Each DSP installed in the system requires a unique VME interrupt vector. These
will be assigned sequentially by the “configure” program. The user must specify
the first VME vector to be allocated to the MMI boards. Please be certain that
all allocated vectors are unique to the MMI boards and not shared with any other
internal or VME systems. Vigra recommends a starting interrupt vector of 0xE0
where possible.

44 Vigra Rev 1.52, 2 May 1997

Section 3.8 HP-UX 9.0.x

Alternatively, the VME interrupt vectors can be automatically assigned by HP-UX
at boot time. To request automatic vector assignment, enter auto as the starting
interrupt vector.

Selecting the board to be configured

A list of MMI audio board models to choose from is displayed. To add configuration
information for a board, select the model name that corresponds to your board. To
end the configuration, enter “0”.

Entering the base VME Address of the board

Each MMI board occupies a VME address range specified by the board’s jumper
settings. The address entered into the program must match the settings on the
board. This address should be entered in hexadecimal form (i.e. 0x81000000).

Entering the VME Interrupt Priority Level of the board

Each DiSPATCH board is set to a VME Interrupt Priority Level based on the board
jumper settings. The priority level specified must match the settings on the board.
The value should be in the range of 1 to 7; the factory default setting is level 1.
Consult the MMI Owner’s Manual for information regarding changing this setting.

Confirming your selections

Once the settings for a board are entered, they will be displayed for verification. If
the information needs to be changed, enter N, and enter the correct information. If
the information is correct, enter Y, and the board’s configuration will be added to
the driver information file.

3.8.6 Add the Driver to the Master File

To make the DiSPATCH (mmidsp) driver part of the HP-UX kernel, edit the file
“/etc/master” and add this line to the section reserved for “Third Party and User
Drivers”:

mmidsp mmidsp 1 1FC -1 43

Rev 1.52, 2 May 1997 Vigra 45

HP-UX 9.0.x Section 3.8

The last number in the line specifies the major number to be assigned to the
DiSPATCH device driver. The major number is a unique identifier used to access
the device driver. No other drivers may share this number. On most systems, 43
is available for use. You may choose any unused number other than 43 and create
the device nodes accordingly.

3.8.7 Add the Driver to the driver description file

Locate the dfile used to build the current HP-UX kernel. This is usually named
/etc/conf/dfile. If this is not the dfile used to build your HP-UX system,
then please edit “dispatch/driver/hp-ux9/Makefile” to reflect the correct
filename.

Edit “dfile” and add the name mmidsp to the end of the list. Also, verify that the
driver vme2 is included in the list. If it is not, add it as well.

3.8.8 Build a New HP-UX Kernel

Go to the “dispatch/driver/hp-ux9” directory and run “make kernel”. This
will compile the DiSPATCH driver and build a new HP-UX kernel.

If any errors are encountered during compilation, there is likely to be a problem
with the installation, and the error should be corrected before proceeding.

3.8.9 Install the New HP-UX Kernel

Make a backup of your old (working) HP-UX kernel and copy the new HP-UX
kernel file into the root directory:

cp -p /hp-ux /hp-ux.nommi

cp -p ./hp-ux /hp-ux

3.8.10 Build the Library and Applications

The DiSPATCH library and sample applications are provided in C source form.
They must be compiled on the HP-UX host system before use.

To build the provided library and applications, go to the top-level “dispatch”
distribution directory and run:

46 Vigra Rev 1.52, 2 May 1997

Section 3.8 HP-UX 9.0.x

make all

No warnings or errors should be reported during the compilation. If any errors are
detected, they should be resolved before continuing with the installation.

3.8.11 Reboot the System

Reboot the HP-UX system and verify that the new kernel is executing correctly.
During startup, the kernel should print a Vigra copyright message and state the
number of DiSPATCH devices configured into the system, as shown below.

(c)Copyright 1995,1996 Vigra a division of VisiCom Laboratories Inc.

mmidsp driver: DiSPATCH Release 1.60, 14-Mar-96

Unit 0: /dev/mmidsp0_map @ A32 0x81000000

Unit 1: /dev/mmidsp0_A @ A32 0x813ffe80 IntVec=0x01 IRQ Level 1

Unit 2: /dev/mmidsp0_B @ A32 0x813ffec0 IntVec=0x02 IRQ Level 1

Unit 3: /dev/mmidsp0_C @ A32 0x813fff00 IntVec=0x03 IRQ Level 1

Unit 4: /dev/mmidsp0_D @ A32 0x813fff40 IntVec=0x04 IRQ Level 1

Vigra MMI DSP Driver Attached, 5 Devices Supported.

3.8.12 Make the Device Handles in “/dev”

Each MMI board has one or more DSPs, each of which needs its own driver handle,
since they send messages independently. Only one mapping device handle is needed
for each board, since all DSPs share a common DRAM address space.

The comments in the file “dispatch/driver/hp-ux9/mmidspinfo.c” contain
the information needed to properly create the device files. All the DiSPATCH
devices are considered character devices.

Execute the mknod command once for each DiSPATCH board, and once for each
DSP on a board. The device names are “mmidsp” followed by the board number
(starting with 0), followed by “ map” (if the device is the mapper device), or followed
by “ A” for the first DSP, “ B” for the second DSP, and so on. The minor number is
the unit number shown in the comments of the driver information file.

For example, if the driver information file contains the following:

/* MMI-4211 at base address 0x81000000 */

{ 0x81000000, 4, -1 }, /* 0 /dev/mmidsp0_map */

{ 0x813FFE80, 0x00, 1 }, /* 1 /dev/mmidsp0_A */

Rev 1.52, 2 May 1997 Vigra 47

HP-UX 9.0.x Section 3.8

{ 0x813FFEC0, 0x00, 1 }, /* 2 /dev/mmidsp0_B */

{ 0x813FFF00, 0x00, 1 }, /* 3 /dev/mmidsp0_C */

{ 0x813FFF40, 0x00, 1 }, /* 4 /dev/mmidsp0_D */

Then the commands to execute would be:

mknod /dev/mmidsp0_map c 43 0

mknod /dev/mmidsp0_A c 43 1

mknod /dev/mmidsp0_B c 43 2

mknod /dev/mmidsp0_C c 43 3

mknod /dev/mmidsp0_D c 43 4

Note: If the major number selected for the DiSPATCH driver is not 43, be sure to
use the major number that was specified in the “/etc/master” file.

Be sure to set the file permissions appropriately.

3.8.13 Test the Package

Verify that the DiSPATCH system is working properly by running the “mmi-test”
program in the “dispatch/apps” directory. Use the “led” command to test the
firmware, driver, and library operation. See Section 5.1 for more information on
using the “mmi-test” program.

The first argument to the “open board” command should be “MMI-210-1” for 1-
meg MMI-210 boards, “MMI-210-4” for 4-meg MMI-210 boards, or “MMI-4211” for
MMI-420/MMI-4211 models.

For example, type the following commands to turn the red LED on and off on an
MMI-4211:

$./mmi-test

*** MMI Test ***

Interactive DiSPATCH test program.

Copyright (C) 1993 Vigra, Inc.

$Revision: 1.23 $

MMI Test: open_board MMI-4211 /dev/mmidsp0

MMI-4211 #1 is ready.

48 Vigra Rev 1.52, 2 May 1997

Section 3.9 HP-UX 10.xx

MMI-4211 #1 [DSP A]: boot

MMI-4211 #1 [DSP A]: led on

MMI-4211 #1 [DSP A]: led off

MMI-4211 #1 [DSP A]:

3.8.14 HP-UX System Administration Manager (SAM)

If you use the HP-UX System Administration Manager (SAM), you can update it
to include a description of the DiSPATCH mmidsp driver by adding a line to the
SAM driver description file “/usr/sam/lib/kc/drivers.tx”.

The line to be added is:

mmidsp::Card:Out:VisiCom DiSPATCH Driver

The new line should be added just after the line:

vme2::Card:Out:VME Expander Driver7.

3.9 HP-UX 10.xx

This section describes the DiSPATCH software installation procedure for version
10 of the HP-UX operating system from Hewlett-Packard Co.

Before attempting to add the DiSPATCH device driver to your HP-UX 10.xx system,
please verify that you can build and boot a new HP-UX kernel without the driver.
These instructions assume a working knowledge of HP-UX system administration
and kernel manipulation. Consult the Hewlett-Packard system administration
manuals for additional information.

3.9.1 Installation

To install the DiSPATCH package, the following steps must be performed. Each of
these steps is explained in detail below.

1. Extract the files from the distribution media.

Rev 1.52, 2 May 1997 Vigra 49

HP-UX 10.xx Section 3.9

2. Configure the MMI board jumpers and install the board.

3. Configure HP-UX VME settings.

4. Configure the DiSPATCH device driver.

5. Build a new HP-UX kernel.

6. Back up your existing HP-UX kernel.

7. Install the new HP-UX kernel.

8. Build the library and sample applications.

9. Reboot the HP-UX system using the new kernel.

10. Make the device handles.

11. Test the DiSPATCH system with the provided applications.

3.9.2 Extract the DiSPATCH Files

The DiSPATCH files are shipped in “tar” format, usually on 4mm DAT tape. To
extract the distribution, cd to a directory where you have write permission, and
run “tar -xv”. It may also be necessary to explicitly specify the name of your local
tape device on the command line.

This will create the “dispatch” directory tree and all required source files. The top-
level directory name will also contain the current DiSPATCH release number, as
in “dispatch-1.87”. Please read the file named “RELEASE” for any supplemental
instructions.

3.9.3 Configure the MMI Board

To install the DiSPATCH device driver, you will need to know the settings of each
MMI board installed in your HP-UX system. These values are:

1. The VME base address.

2. The VME interrupt priority level.

The VME base address and interrupt priority level are set via jumpers on the MMI
board. Choose settings that do not conflict with other boards or system hardware.

50 Vigra Rev 1.52, 2 May 1997

Section 3.9 HP-UX 10.xx

3.9.4 HP-UX VME Settings

HP-UX requires that the system administrator configure the VME bus to select
interrupts and address regions for each VME board. Each of the seven VMEbus
interrupt levels can be assigned to one HP processor board. An interrupt level can
not be assigned to multiple systems at once.

Before installing and configuring the MMI boards, you much choose one or more
interrupt levels and assign them to the HP-UX system. The factory-default in-
terrupt level for MMI boards is 1. This can be changed via the on-board jumper
settings. Consult the MMI owner’s manual for available jumper configurations.

Verify that the interrupts and memory regions are allocated correctly by using
“vme config(1M)” on the HP-UX host system. If you have multiple CPU boards in
the same VMEbus, the MMI interrupt request line should be assigned to the HP-UX
processor only. For more information on VME configuration and the configuration
file format, see the HP-UX 10.20 VME Services Guide.

If an HP-RT target system shares the same VMEbus as the HP-UX host,
verify that the interrupt assignment does not conflict with those defined in
“$HPRTroot/usr/include/machine/sysdev.h”. Consult the HP-RT System
Administration Tasks manual for more information on interrupt allocation under
HP-RT.

3.9.5 Driver Configuration

Before building the new kernel device driver, the DiSPATCH configuration program
must be run to interactively describe the MMI hardware configuration of your
system. To build and run the “configure” program, execute “make config” from
within the “dispatch/driver/hp-ux10” directory.

If the program builds successfully, it will run and prompt for board information.
For each installed board, you will need to provide the following information:

� The starting VME interrupt vector.

� The Vigra MMI model name.

� The board’s VME base address, as configured by the jumpers.

� The board’s VME interrupt priority level.

Rev 1.52, 2 May 1997 Vigra 51

HP-UX 10.xx Section 3.9

Assigning the VME Interrupt Vectors

Each DSP installed in the system requires a unique VME interrupt vector. These
will be assigned sequentially by the “configure” program. The user must specify
the first VME vector to be allocated to the MMI boards. Please be certain that
all allocated vectors are unique to the MMI boards and not shared with any other
internal or VME systems. Vigra recommends a starting interrupt vector of 0xE0
where possible.

Alternatively, the VME interrupt vectors can be automatically assigned by HP-UX
at boot time. To request automatic vector assignment, enter the word auto as the
starting interrupt vector.

Selecting the board to be configured

A list of MMI audio board models to choose from is displayed. To add configuration
information for a board, select the model name that corresponds to your board. To
end the configuration, enter “0”.

Entering the base VME Address of the board

Each MMI board occupies a VME address range specified by the board’s jumper
settings. The address entered into the program must match the settings on the
board. This address should be entered in hexadecimal form (i.e. 0x81000000).

Entering the VME Interrupt Priority Level of the board

Each DiSPATCH board is set to a VME Interrupt Priority Level based on the board
jumper settings. The priority level specified must match the settings on the board.
The value should be in the range of 1 to 7; the factory default setting is level 1.
Consult the MMI Owner’s Manual for information regarding changing this setting.

Confirming your selections

Once the settings for a board are entered, they will be displayed for verification. If
the information needs to be changed, enter N to start over. If the information is cor-
rect, enter Y, and the board’s configuration will be added to the driver information
file.

52 Vigra Rev 1.52, 2 May 1997

Section 3.9 HP-UX 10.xx

3.9.6 Build a New HP-UX Kernel

Go to the “dispatch/driver/hp-ux10” directory and run “make kernel”. This
will compile the DiSPATCH driver and build a new HP-UX kernel. The kernel and
customized files are built in this directory, and no system files are modified at this
time.

If any errors are encountered during compilation, there is likely to be a problem
with the installation, and the error should be corrected before proceeding. There
may be a warning about “potentially obsolete features” during the link phase of
the kernel build. This message can be safely ignored. A successful kernel build
produces the file “vmunix test”.

3.9.7 Back Up Your Existing Kernel

Before installing the DiSPATCH kernel for the first time, make a back-up copy
of your existing files. You can run “make backup kernel” to copy your ex-
isting “/stand/system” and “/stand/vmunix” to “system.no-mmidsp” and
“vmunix.no-mmidsp”, respectively. If this is not appropriate for your system,
please back up your kernel files manually.

3.9.8 Install the New HP-UX Kernel

After making a reliable backup of your existing (working) HP-UX kernel, copy the
new HP-UX kernel file into place with “make install kernel”.

3.9.9 Build the Library and Applications

The DiSPATCH library and sample applications are provided in C source form.
They must be compiled on the HP-UX host system before use.

To build the provided library and applications, go to the top-level “dispatch”
distribution directory and run:

make all

No warnings or errors should be reported during the compilation. If any errors are
detected, they should be resolved before continuing with the installation.

Rev 1.52, 2 May 1997 Vigra 53

HP-UX 10.xx Section 3.9

3.9.10 Reboot the System

Reboot the HP-UX system and verify that the new kernel is executing correctly.
During startup, the kernel should print a Vigra copyright message and state the
number of DiSPATCH devices configured into the system, as shown below.

DiSPATCH Release 1.87, 1997-05-02

Unit 0: /dev/mmidsp0_map @ A32 0x81000000

Unit 1: /dev/mmidsp0_A @ A32 0x813ffe80 IntVec=0x01 IRQ Level 1

Unit 2: /dev/mmidsp0_B @ A32 0x813ffec0 IntVec=0x02 IRQ Level 1

Unit 3: /dev/mmidsp0_C @ A32 0x813fff00 IntVec=0x03 IRQ Level 1

Unit 4: /dev/mmidsp0_D @ A32 0x813fff40 IntVec=0x04 IRQ Level 1

Vigra MMI DSP Driver Attached, 5 Devices Supported.

3.9.11 Make the Device Handles in “/dev”

Each MMI board has one or more DSPs, each of which needs its own driver handle,
since they send messages independently. In addition, one mapping device handle is
needed for each MMI board, since all DSPs share a common DRAM address space.

To create these device nodes, run the script “make devs” as root from the
“dispatch/driver/hp-ux10” driver directory. This should automatically find
the assigned device major number and create the configured devices in /dev.

Be sure to set the file permissions for “/dev/mmidsp*” appropriately. Only users
with read and write permission on these device handles can access the audio boards.

3.9.12 Test the Package

Verify that the DiSPATCH system is working properly by running the “mmi-test”
program in the “dispatch/apps” directory. Use the “led” command to test the
firmware, driver, and library operation. See Section 5.1 for more information on
using the “mmi-test” program.

The first argument to the “open board” command should be “MMI-210-1” for 1-
meg MMI-210 boards, “MMI-210-4” for 4-meg MMI-210 boards, or “MMI-4211” for
MMI-420/MMI-4211 models.

For example, type the following commands to turn the red LED on and off on an
MMI-4211:

$./mmi-test

54 Vigra Rev 1.52, 2 May 1997

Section 3.10 Motorola System V/88

*** MMI Test ***

Interactive DiSPATCH test program.

Copyright (C) 1993 Vigra, Inc.

$Revision: 1.23 $

MMI Test: open_board MMI-4211 /dev/mmidsp0

MMI-4211 #1 is ready.

MMI-4211 #1 [DSP A]: boot

MMI-4211 #1 [DSP A]: led on

MMI-4211 #1 [DSP A]: led off

MMI-4211 #1 [DSP A]:

3.10 Motorola System V/88

The directory “dispatch/driver/sysv88” contains DiSPATCH support for Mo-
torola UNIX System V/88 Release R32V3.

Before attempting to add the DiSPATCH device driver to your System V/88 system,
please verify that you can build and boot a new kernel without this driver. These
instructions assume a working knowledge of System V/88 system administration.
Consult the Motorola document titled System V/88 and System V/68 Device Driver
Writer’s Guide for additional information concerning the use of sysgen and build-
ing a Unix kernel.

Before beginning DiSPATCH installation, make certain that you have a com-
plete and reliable system backup! As with any kernel modifications, an error
in installation could damage existing files or render the entire system unbootable.
You may also wish to make a copy of your existing “/unix” to keep on hand as an
alternate kernel with no DiSPATCH driver.

3.10.1 Installation

To install the DiSPATCH package, the following steps must be performed. Each of
these steps is explained in detail below.

Rev 1.52, 2 May 1997 Vigra 55

Motorola System V/88 Section 3.10

1. Extract the files from the distribution media.

2. Verify that the definitions in the driver Makefile are correct.

3. Build the device driver and configuration tools.

4. Configure the DiSPATCH device driver.

5. Install the DiSPATCH driver support files.

6. Add the driver to the System V/88 kernel configuration using sysgen.

7. Verify that the maximum shared memory segment size is adequate.

8. Build a new System V/88 kernel.

9. Reboot the System V/88 system using the new kernel.

10. Build the library and sample applications.

11. Test the DiSPATCH system with the provided applications.

3.10.2 Extract the DiSPATCH Files

The DiSPATCH files are shipped in “tar” format. To extract the distribution, cd
to a directory where you have write permission, and run “tar -xv”. It may also be
necessary to explicitly specify the name of your local tape device on the command
line.

This will create the “dispatch” directory tree and all required source files. The
name of the “dispatch” directory may also contain a version number, for example:
“dispatch-1.45”.

3.10.3 Check over the definitions in Makefile

The first part of the Makefile defines several symbols that may need editing for
your system. These are:

MAJOR NUMBER
The major device number for all MMI DSP device nodes. Make sure that this
is set to a major number not currently in use on your system (0–255).

KERN SRC
This is the base directory for the Motorola kernel build tree.

56 Vigra Rev 1.52, 2 May 1997

Section 3.10 Motorola System V/88

KERN LIB DIR
This directory contains all the binary libraries that make up the kernel. The
compiled MMI driver library will be copied here.

SYSGEN DESC DIR
This directory holds device descriptions used by /etc/sysgen. The new
MMI driver description will be placed here.

RC FILE
The MMI startup file needs to run each time the System V/88 system is
booted. By copying the startup script to this file, it will be done automatically
during the “/etc/rc” phase of startup. Make sure that the number in this
filename does not conflict with any other startup files on your system.

By default, the Makefile will use the default C compiler (cc) to build all binaries.
This is assumed to be the Green Hills C compiler. If your default compiler is not
the Green Hills C compiler, then you may need to edit the definitions of CC and
CFLAGS as necessary.

The default values provided in the Makefile are suitable for a standard installation
of System V/88.

3.10.4 Build the Device Driver and Configuration Tools

To build the device driver and configuration tools, change to the directory
“dispatch/driver/sysv88k” and run make.

The Makefile will build three binaries:

lib.mmidsp
This is the kernel device driver archive for System V/88, necessary to sup-
port DSP interrupts and messages. The driver binary does not contain any
configuration information that is specific to your system configuration.

configure
This program will be used next to interactively construct the system-specific
configuration files for your installation.

mmi map
This program creates a shared memory segment for each MMI board, so that
many applications can share a board with the kernel. It will be run during
system startup, usually during /etc/rc2 operations.

Rev 1.52, 2 May 1997 Vigra 57

Motorola System V/88 Section 3.10

The compiler should not report any errors or warnings during compilation. If any
were encountered during the build of these files, stop here and investigate the
cause.

3.10.5 Driver Configuration

The program “configure” will help you create three files that describe your system
configuration. These files are:

mmiconf.desc
This file is a “device description” entry for the Unix sysgen kernel-building
system. It will be installed into the sysgen/descriptions directory of your
kernel source tree.

mmiconf.mkdev
This is a shell script to create the character device nodes in the /dev directory.
It will be run automatically as part of the installation procedure.

mmiconf.start
This is a shell script to create the necessary shared memory regions at startup.
It will be copied to /etc/rc2.d/S95mmi start during installation, which
will allow it to run during each future boot process.

To create these files, execute the command “make conf” from within the
“dispatch/driver/sysv88k” directory. This program will ask questions and
prompt for board information. For each installed board, you will need to provide
the following information:

� The Vigra MMI model name.

� The board’s VME base address, as configured by the jumpers.

� The board’s VME interrupt priority level.

Each DSP installed in the system requires a unique VME interrupt vector. These
will be assigned sequentially by the “configure” program. The user must specify
the first VME vector to be allocated to the MMI boards. Please be certain that
all allocated vectors are unique to the MMI boards and not shared with any other
internal or VME systems. Vigra recommends a starting interrupt vector of 0xE0
where possible.

58 Vigra Rev 1.52, 2 May 1997

Section 3.10 Motorola System V/88

When configuration is complete, the three “mmiconf.*” files will be created in the
current directory. You may examine or edit them if necessary. You may also re-run
configure to create new files if there were any errors in entering your system
configuration.

3.10.6 Install the DiSPATCH Driver and Support Files

The installation step must be performed by the super-user since it copies files into
protected directories. Please verify that you are root before proceeding.

To perform the driver installation, execute the command “make install” from the
“dispatch/driver/sysv88k” directory. This will perform the following steps:

� Copy “mmiconf.desc” to the sysgen description directory.

� Copy “lib.mmidsp” to the kernel library directory.

� Copy the program “mmi map” to /etc.

� Copy “mmiconf.start” to a startup file in /etc/rc.

� Run “mmiconf.mkdev” to create device nodes in /dev.

You may verify the exact commands and filenames used during installation by
running “make -n install” or reading the Makefile itself.

3.10.7 Add the Driver to the Kernel Using /etc/sysgen

After all the necessary configuration files have been copied into place, you must
run “/etc/sysgen” to select the new mmidsp driver and include it in the kernel.

The new device description line should appear near the end of the device list and
looks like this:

Vigra MMI Audio DSP Board mmidsp

Mark this selection with a “*” (by pressing s), and then press o to select the
individual parts of the driver.

You will then be presented with a list of devices and one driver. You must select
ALL the entries on this mmidsp screen. When all lines are selected and marked
with a “*”, you may exit the mmidsp screen, but do not exit sysgen yet.

Rev 1.52, 2 May 1997 Vigra 59

Motorola System V/88 Section 3.10

3.10.8 Verify the Maximum Shared Memory Segment Size (SHMMAX).

The default sysgen configuration for System V/88 sets the maximum shared mem-
ory segment size to 512 kbytes. This is not big enough to map an MMI audio board,
so this maximum must be raised before DiSPATCH can function.

The configuration parameter SHMMAX defines the maximum shared memory seg-
ment size. This parameter is found on the “Shared Memory Parameters” screen of
the kernel configuration in sysgen. Set the value of this field to four megabytes,
entered as “(4096*1024)”.

3.10.9 Build a New Kernel

Press q repeatedly to exit sysgen and answer “yes” to all three of the questions
that follow. This will save your configuration changes, rebuild the Unix kernel,
and install the new kernel at the next reboot.

3.10.10 Reboot the System V/88 System

If no errors are reported during kernel compilation, reboot the machine by running
“init 0” or something similar. When the system reboots, you should see a series
of kernel messages preceeded by “mmidsp:” indicating your MMI configuration.
They will look similar to these:

mmidsp: Vigra MMI Audio DSP driver installed. (C) 1994, Vigra.

mmidsp: DSP 0 is at 0x813FFE80 using ivect 0xD0, level 1.

mmidsp: DSP 1 is at 0x813FFEC0 using ivect 0xD1, level 1.

mmidsp: DSP 2 is at 0x813FFF00 using ivect 0xD2, level 1.

mmidsp: DSP 3 is at 0x813FFF40 using ivect 0xD3, level 1.

If any messages report that a warning that a DSP was “not found”, then there may
be a configuration or installation error. Check the kernel configuration files and
address jumper settings on each card.

3.10.11 Build the Library and Applications

The DiSPATCH library and sample applications are provided in C source form.
They must be compiled on the System V/88 machine before they can be run.

60 Vigra Rev 1.52, 2 May 1997

Section 3.10 Motorola System V/88

To build the provided library and applications, go to the top-level “dispatch”
distribution directory and run:

make all

No warnings or errors should be reported during the compilation. If any errors are
detected, they should be resolved before continuing with the installation.

3.10.12 Test the Package

Verify that the DiSPATCH system is working properly by running the “mmi-test”
program in the “dispatch/apps” directory. Use the “led” command to test the
firmware, driver, and library operation. See Section 5.1 for more information on
using the “mmi-test” program.

The first argument to the “open board” command should be “MMI-210-1” for 1-
meg MMI-210 boards, “MMI-210-4” for 4-meg MMI-210 boards, or “MMI-4211” for
MMI-420/MMI-4211 models.

For example, type the following commands to turn the red LED on and off on an
MMI-4211:

$./mmi-test

*** MMI Test ***

Interactive DiSPATCH test program.

Copyright (C) 1993 Vigra, Inc.

$Revision: 1.23 $

MMI Test: open_board MMI-4211 /dev/mmidsp0

MMI-4211 #1 is ready.

MMI-4211 #1 [DSP A]: boot

MMI-4211 #1 [DSP A]: led on

MMI-4211 #1 [DSP A]: led off

MMI-4211 #1 [DSP A]:

Rev 1.52, 2 May 1997 Vigra 61

Motorola System V/88 Section 3.10

62 Vigra Rev 1.52, 2 May 1997

4. C PROGRAMMING LIBRARY

The DiSPATCH Programming Library provides the software developer with a
complete set of high-level function calls to manipulate the DiSPATCH firmware
from the host application. In conjunction with the DiSPATCH device driver, the
library routines handle all DSP initialization and bootstrap operations, insulating
the audio programmer from the many of the details of VME interfacing.

Vigra’s MMI VME audio product line offers a wide variety of specific board features,
and each board has unique capabilities and interface procedures. The program-
ming library provides a uniform interface to all supported Vigra VME audio boards
allowing a single application to use any model, as well ensure compatibility with
future Vigra DiSPATCH VME boards.

4.1 Library Overview

The primary function of the library is to provide a software interface to the
DiSPATCH firmware and VME hardware. The library does not perform any audio
signal processing. Instead, the library directs the DSP which processes the audio
streams in real time on behalf of the host. The library manages the transfer of
audio data between the host and the MMI board memory.

The library treats each audio DSP as an independent processing agent. Different
DSPs on the same MMI board can be used to perform completely unrelated tasks.
In most cases, they can even be controlled by separate system processes.

The library is fully re-entrant and dynamically allocates all resources to support a
virtually unlimited number of DSPs.

4.1.1 Device Driver

The DiSPATCH device driver is responsible for receiving messages from the DSP
and placing them in a queue to be read by the library. The driver does not interpret
or process the incoming data at all. These simple requirements allow the device

63

Library Overview Section 4.1

driver to be small, efficient, and very portable. The driver is interrupt driven for
minimum latency.

On systems (such as VxWorks) that allow interrupts to be received by non-kernel
processes, the device driver is implemented as an integral part of the library. This
interrupt-driven routine receives the DSP messages and writes them to a data
stream that is read by the library.

4.1.2 DSP Naming

The library refers to DSPs only by a symbolic name. On Unix-like operating
systems, this name is the filename for the special device driver node, usually in
the “/dev” directory. The library requires that the driver handles are named as
described in Chapter 3. The host application gives the library a basename for the
board (i.e. “/dev/mmidsp0”), and the library builds the appropriate DSP device
names from it.

Under the Microware OS-9 operating system, the DSP symbolic names are identical
to those described above. The Unix “/dev/” prefix is optional under OS-9, but it is
silently ignored by the library to allow complete application compatibility between
platforms.

This means that neither the DiSPATCH library or host application needs to know
the physical address of the VME board. Only the kernel configuration file needs
to contain this information.1 However, the host application does need to know the
device filename and the board model to properly initialize the board.

4.1.3 Shared Access

Two or more different processes or threads can share an MMI board if, and only
if, they use separate DSPs. Under no conditions can two processes share a single
DSP, because only one process can receive messages from each individual DSP.

A single process can utilize many different DSPs, on any variety of supported MMI
boards. The library will simultaneously process messages from all active DSPs.

1In the case of VxWorks, the hardware configuration information is compiled as part of the inter-
rupt service routine and support functions in “sys vxworks.c”.

64 Vigra Rev 1.52, 2 May 1997

Section 4.1 Library Overview

4.1.4 Handles

The library provides two special structures to contain run-time information about
the DSP board. The first is of a type named mmi board t. This is a pointer to a
structure that contains various state information about a single MMI board. The
library creates and returns this structure to the application upon board initializa-
tion.

After obtaining the mmi board t board handle with mmi open(), the application
can then call mmi get dsp() to create a handle for a single DSP. This handle is of
type dsp t and is passed as an argument to almost all library routines.

4.1.5 Source Code

Complete source code to the DiSPATCH Programming Library is provided on the
distribution media. This source code can be an invaluable aid in tracking bugs
or enhancing the software for specialized applications. However, Vigra can not
provide technical support for customer-modified versions of the library. Please
study the code carefully before making any changes, and always retain a copy of
the original library source code.

4.1.6 Include Files

The DiSPATCH Programming Library includes a header file named “dispatch.h”
which must be included by any application that uses the library. This file defines
necessary data structures used by the library and several constants that may be
useful to the application.

Also, the “dispatch.h” file declares C function prototypes for all external library
functions. For ANSI C compilers, these prototypes include argument declarations,
while non-ANSI compilers will receive only forward function declarations without
argument lists.

Because “dispatch.h” includes “firm defs.h”, that file must also be accessible
when compiling DiSPATCH applications. The include file “dsp defs.h” is nec-
essary for recompiling the library or device drivers, but should never need to be
included in application code.

All DiSPATCH include files are wrapped with preprocessor directives to ensure
that they are included only once during compilation.

Rev 1.52, 2 May 1997 Vigra 65

Library Overview Section 4.1

4.1.7 Completion Tokens

Some DiSPATCH library functions start DSP tasks, such as playback, that take a
significant amount of time to complete. These functions return a unique positive
integer “completion token” that can be saved by the calling application. The DSP
will send a completion message to the library when the task completes, and the
library will store this notification internally.

The DiSPATCH application can wait for a completion message by calling
mmi complete() with the given completion token. This function will not return
until the message is received from the DSP. Because mmi complete() uses the
select() system call, very little host CPU time is consumed during the wait.

Alternatively, the application can poll for the response while performing other
tasks. In this case, the application can check if the response has been received
(poll) by calling mmi check response(). This function will return 0 only after
the specified response has been received from the DSP. The host application should
then call mmi complete() to delete the message from the library’s internal list.

66 Vigra Rev 1.52, 2 May 1997

Section 4.2 Initialization and Control Functions

4.2 Initialization and Control Functions

The functions described in this section deal with the initialization and control of the
library itself. In general, these commands do not execute DiSPATCH commands
on the DSP, but are performed by the host itself.

4.2.1 mmi open

Prototype: mmi board t mmi open (char *model, char *basename,

long unsigned int vme addr);

Arguments:
model String model name.

basename Device driver basename.

vme addr VME address offset.

Returns: A pointer to an allocated and initialized MMI board handle, or NULL
if there was an error during initialization.

Description: This function opens and prepares an MMI board for library use.
This is usually the first DiSPATCH function called by an applica-
tion during the initialization process.

The arguments specify which MMI board to open and initialize.
The model argument is a string name representing Vigra’s model
name for the board. The name is case-insensitive but must oth-
erwise match one of the supported board names. At the time of
this writing, the following models are recognized and supported by
DiSPATCH:

Model Name
MMI-105-1
MMI-105-4
MMI-105-8
MMI-210-1
MMI-210-4
MMI-4210
MMI-4211
MMI-420

Rev 1.52, 2 May 1997 Vigra 67

Initialization and Control Functions Section 4.2

The last argument, vme addr, can be used to specify an application-
dependent address offset for VME mapping. Under all presently-
supported operating systems, this parameter should always be set
to zero, since the VME base address of the board is known by the
kernel.

The mmi open() library function performs these functions:

1. Initialize the library state if this is the first call to mmi open.

2. Validate the specified model name and look up the correspond-
ing board functions.

3. Allocate an initialize a new mmi board t structure.

4. Initialize the status information for each DSP on the board.

5. Write the Command ID codes into the command structures in
DRAM.

68 Vigra Rev 1.52, 2 May 1997

Section 4.2 Initialization and Control Functions

4.2.2 mmi close

Prototype: int mmi close (mmi board t mmi);

Arguments:
mmi An MMI board handle returned by mmi open().

Returns: Zero on success, or -1 on failure.

Description: This function deallocates and unmaps and MMI board structure
created by mmi open(). Any active DSPs on the closed board will
be halted. All memory allocated by the library for the specified
board will be returned to the system by mmi close().

It is important to properly close all MMI boards before exiting, es-
pecially on systems like VxWorks that do not automatically return
system resources upon task completion.

After calling mmi close(), the MMI board pointer is totally deal-
located and should not be used again by the calling application. If
necessary, the board can be re-opened by calling mmi open().

Rev 1.52, 2 May 1997 Vigra 69

Initialization and Control Functions Section 4.2

4.2.3 mmi lib initialize

Prototype: int mmi lib initialize (void);

Returns: Zero on success, or -1 on failure.

Description: This routine resets the operating state of the DiSPATCH Pro-
gramming Library. Most applications will never need to call this
function directly, since it is automatically executed the first time
mmi open() is called.

On operating systems such as VxWorks that do not reset global
variable for each process or task, it may be necessary to call this
function manually when an application is not terminated normally.
If all applications properly call mmi close() before exiting, then
it is never necessary to manually reset the library.

Note that manually initializing the library does not reclaim any
memory that may still be allocated. Under VxWorks, if a task
terminates before releasing library resources, then they can not
be recovered except by resetting the operating system. Unix-like
systems always automatically de-allocate these resources for ter-
minated tasks.

70 Vigra Rev 1.52, 2 May 1997

Section 4.2 Initialization and Control Functions

4.2.4 mmi get dsp

Prototype: dsp t mmi get dsp (mmi board t mmi, int channel);

Arguments:
mmi Board handle created by mmi open().

channel DSP channel number to retrieve.

Returns: A handle (type dsp t) for the specified DSP, or NULL on failure.

Description: Most of the functions in the DiSPATCH Programming Library take
an argument of type dsp t as their first argument. This pointer
is the handle for a single DSP on an initialized MMI board. The
mmi get dsp() function creates the handle for a given DSP.

The first argument is a handle for the whole MMI board containing
the desired DSP. This handle is returned from a successful call to
mmi open().

The channel argument specifies which of the available DSPs to
use. The first DSP is 0, the second is 1, and so on.

This function will return NULL if the mmi argument is NULL or the
specified channel number is invalid.

Rev 1.52, 2 May 1997 Vigra 71

Initialization and Control Functions Section 4.2

4.2.5 mmi get ram base

Prototype: unsigned short *mmi get ram base (dsp t dsp);

Arguments:
dsp A DSP handle returned by mmi get dsp().

Returns: A pointer to the start of DRAM, or NULL if dsp is NULL.

Description: This function returns a pointer to the start of mapped DRAM.
This is the starting address of the user-accessible memory on the
MMI board. Any data on the board can be directly accessed by the
user application be reading or writing to memory starting at this
address.

The number of 16-bit words available for user data buffers is stored
in the databuf size field of an initialized mmi board structure.
The total size of on-board DRAM (including space reserved for the
library) is found in the ram size field.

72 Vigra Rev 1.52, 2 May 1997

Section 4.2 Initialization and Control Functions

4.2.6 mmi get model

Prototype: char *mmi get model (mmi board t mmi);

Arguments:
mmi Board handle created by mmi open().

Returns: The string model name of the board.

Description: This function is used to retrieve the model name of an open MMI
board. It returns the name string given to mmi open().

This function will return NULL if the mmi argument is NULL.

Rev 1.52, 2 May 1997 Vigra 73

Initialization and Control Functions Section 4.2

4.2.7 mmi start firmware

Prototype: int mmi start firmware (dsp t dsp, char *basename);

Arguments:
dsp A DSP handle returned by mmi get dsp().

basename Substitute boot image during development. Use
NULL.

Returns: Zero on success, or -1 on failure.

Description: This powerful function completely initializes a single DSP for
DiSPATCH operation. This procedure involves resetting the DSP,
uploading the P, X, and Y memory images, and waiting for the
appropriate boot messages.

When this function returns successfully, the DSP is ready for
DiSPATCH operation.

The basename argument is used only during firmware develop-
ment and should normally be passed as NULL. If a string basename
is supplied, the library will load and boot the specified binary im-
age from disk. When basename is NULL, the library will use the
default DiSPATCH firmware image linked with into library.

74 Vigra Rev 1.52, 2 May 1997

Section 4.2 Initialization and Control Functions

4.2.8 mmi boot default

Prototype: int mmi boot default (dsp t dsp);

Arguments:
dsp A DSP handle returned by mmi get dsp().

Returns: Zero on success, or -1 on failure.

Description: This function performs the first stage of the DiSPATCH boot pro-
cedure by resetting the DSP hardware and uploading the default
P memory image. The X and Y memory regions are not initialized
by this function.

Applications should normally use mmi start firmware(), in-
stead of this function, to perform all stages of the boot procedure.

Rev 1.52, 2 May 1997 Vigra 75

Initialization and Control Functions Section 4.2

4.2.9 mmi diag boot

Prototype: int mmi diag boot (dsp t dsp);

Arguments:
dsp A DSP handle returned by mmi get dsp().

Returns: Zero on success, or -1 on failure.

Description: This diagnostic routine performs a standard DiSPATCH DSP ini-
tialization and boot procedure, while printing verbose status in-
formation to stdout. Since each step is announced and then per-
formed discretely, this function is very useful for rapidly determin-
ing which part of the procedure is failing.

At the time of this writing, mmi diag boot() of DiSPATCH Pack-
age version 1.30 produces the following output for correct initial-
ization:

** Diagnostic Boot **

1: Un-reset the DSP and select VMEbus as the boot source.

2: Making sure the DSP is ready for first word.

3: Send the program word #1 to the host port.

4: Waiting for the DSP to get word #1.

5: Send the program word #2 to the host port.

6: Waiting for the DSP to get word #2.

7: Send the program word #3 to the host port.

8: Waiting for the DSP to get word #3.

9: Sending the remaining 8363 program words to host port.

10: Checking if the DSP accepted the last program word.

11: Activating firmware. LED should light 1/2 brightness.

12: Opening DSP device driver.

13: Waiting for Stage 1 Boot Progress message.

14: Uploaded X memory image.

15: Uploaded Y memory image.

16: Waiting for Stage 2 Boot Progress message.

17: Probing running firmware.

** Initialization complete. **

The exact number and format of the boot stages may change in
future versions, but the complete output should always end with
“** Initialization complete. **”.

76 Vigra Rev 1.52, 2 May 1997

Section 4.2 Initialization and Control Functions

Rev 1.52, 2 May 1997 Vigra 77

Initialization and Control Functions Section 4.2

4.2.10 mmi boot file

Prototype: int mmi boot file (dsp t dsp, char *filename);

Arguments:
dsp A DSP handle returned by mmi get dsp().

filename The filename of the DiSPATCH P memory im-
age.

Returns: Zero on success, or -1 on failure.

Description: This function performs the first stage of the DiSPATCH boot pro-
cedure by resetting the DSP hardware and uploading the specified
P memory image. The X and Y memory regions are not initialized
by this function.

The filename argument specifies a data file containing a raw
DiSPATCH image to be uploaded to the DSP P memory space.
To use the default firmware image built into the library, call
mmi boot default() instead.

Applications should normally use mmi start firmware(), in-
stead of this function, to perform all stages of the boot procedure.

78 Vigra Rev 1.52, 2 May 1997

Section 4.2 Initialization and Control Functions

4.2.11 mmi halt dsp

Prototype: int mmi halt dsp (dsp t dsp);

Arguments:
dsp A DSP handle returned by mmi get dsp().

Returns: Zero on success, or -1 on failure.

Description: This function asserts the hardware reset for the specified DSP. This
freezes all DSP operation and immediately halts any audio output.

After a hardware reset, the DSP must be re-initialized before
DiSPATCH operation can be resumed. This can be accomplished
with a call tommi start firmware(). The DSP is then completely
reset to the default startup state.

Rev 1.52, 2 May 1997 Vigra 79

Initialization and Control Functions Section 4.2

4.2.12 mmi poll messages

Prototype: int mmi poll messages (void);

Returns: Zero on success, or -1 on failure.

Description: This routine services any messages that may be waiting in active
DSPs. After all waiting messages have been read from the de-
vice driver and processed by the library, the routine returns. Any
messages received from the DSP are stored in the library queues.
If no messages are waiting to be read, then this function returns
immediately.

This function can be used when a process is expecting a mes-
sage from the DSP but does not wish to wait indefinitely for it
by calling mmi wait response(). Instead, the process can call
mmi poll messages() at convenient intervals, and then check
for specific received messages with mmi check response().

80 Vigra Rev 1.52, 2 May 1997

Section 4.2 Initialization and Control Functions

4.2.13 mmi malloc

Prototype: void *mmi malloc (int size);

Arguments:
size Number of bytes to allocate.

Returns: Memory pointer on success, or NULL on failure.

Description: This is a very simple function to allocate a block of memory and
test for failure. If the system fails to provide the requested memory,
then the library will print an error message to stderr and return
NULL.

This function is used within the library itself and made externally
available only for convenience. It is not necessary for the applica-
tion programmer to use this function to allocate memory.

Rev 1.52, 2 May 1997 Vigra 81

Initialization and Control Functions Section 4.2

4.2.14 mmi test host dram

Prototype: int mmi test host dram (mmi board t mmi, int verbose);

Arguments:
mmi An MMI board handle returned by mmi open().

verbose Non-zero value prints verbose progress mes-
sages.

Returns: Zero on success, or -1 on RAM failure.

Description: This routine tests the host’s access to the shared DRAM on an
MMI board. No DSP is involved in this procedure.

If the verbose argument is non-zero, then the library will print
status messages to stdout during the test. If verbose is zero, no
messages will be printed; only the return value will indicate the
test results.

The DRAM test is completely destructive, but the Command ID
codes are automatically restored after the test. Any command
arguments or audio data buffers will be lost during the test.

82 Vigra Rev 1.52, 2 May 1997

Section 4.2 Initialization and Control Functions

4.2.15 mmi wait response

Prototype: int mmi wait response (dsp t dsp, int type, int data);

Arguments:
dsp A DSP handle returned by mmi get dsp().

type DiSPATCH message type code.

data Data portion of the expected message.

Returns: Zero on success, or -1 on error.

Description: This function will wait indefinitely for a specific message from the
DSP. The message is specified by two 24-bit values, a type word
and a data word. The DiSPATCH message types are defined in
“dispatch.h” and documented in the DiSPATCH Firmware User’s
Manual.

This function will first check the list of previously received and
unclaimed DiSPATCH messages, and then wait for new mes-
sages if the expected message is not found. When the message
is received from the DSP, it will be deleted from the list and
mmi wait response() will return.

Rev 1.52, 2 May 1997 Vigra 83

Initialization and Control Functions Section 4.2

4.2.16 mmi complete

Prototype: int mmi complete (dsp t dsp, int token);

Arguments:
dsp A DSP handle returned by mmi get dsp().

token A completion token to wait for.

Returns: Zero on success, or -1 on error.

Description: This function waits for any queued DiSPATCH command, such
as PLAY BUFFER, to be completed. Functions that result in com-
pletion messages, such as mmi play buffer(), return a comple-
tion token to the caller, as described in Section 4.1.7. By calling
mmi complete() with the given completion token, the application
can pause until the response is received from the DSP.

This function is identical to calling mmi wait response() with a
MSGTYPE COMPLETION message type.

84 Vigra Rev 1.52, 2 May 1997

Section 4.2 Initialization and Control Functions

4.2.17 mmi check response

Prototype: int mmi check response (dsp t dsp, int msg type, int msg data);

Arguments:
dsp A DSP handle returned by mmi get dsp().

msg type DiSPATCH message type code.

msg data Message data to check for.

Returns: Zero if the message is found, or -1 if it has not been received.

Description: While mmi wait response() waits indefinitely for the specified
message to be received from the DSP, this function will simply
check the pending messages at the time it is called and return
immediately.

A return value of zero indicates that the specified message was
received from the DSP and is waiting in the library message list.
The application should then call mmi wait response() to remove
the message from the list.

Rev 1.52, 2 May 1997 Vigra 85

Initialization and Control Functions Section 4.2

4.2.18 mmi get dsp filedes

Prototype: int mmi get dsp filedes (dsp t dsp);

Arguments:
dsp A DSP handle returned by mmi get dsp().

Returns: DSP file descriptor on success, or -1 on failure.

Description: Some applications may not be well-suited to the library’s standard
message receiving functions, such as mmi wait response() or
mmi complete(). These programs may need to wait upon other
file descriptors and call select() from inside the user application.

The function mmi get dsp filedes() provides a means to re-
trieve the file descriptor for a given DSP. This descriptor can be
used by the application for calls to select(), but should never be
read from outside of the library.

86 Vigra Rev 1.52, 2 May 1997

Section 4.2 Initialization and Control Functions

4.2.19 mmi register callback

Prototype: int mmi register callback (dsp t dsp, int type, int data, func t *func, void *arg1,

Arguments:
dsp A DSP handle returned by mmi get dsp().
type Message type to link to callback.
data Message data word to link to callback.
func User function to call when message is received.
arg1

arg2

arg3 Optional user-defined arguments to be passed to
callback.

Returns: Zero on success, or -1 on failure.

Description: This function requests that a user function be called when a spe-
cific message arrives from the DSP. This response interface can be
used instead of the mmi wait response() or mmi complete()
for increased efficiency.

When a DSP message is received that matches the callback, the
specified user function will be called by the library as follows:

func (dsp, type, data, arg1, arg2, arg3);

The return value of the user function is ignored. Note that the
DSP message will not be stored in the library queue. This means
that the application is not required to delete it with a call to
mmi wait response(). Messages that do not match any callbacks
will be handled normally.

Each DSP message may only have one callback associated with it.
After the first call to mmi register callback(), any calls with
the same type and data will replace the current callback. Note
that the callback assignments for one DSP are independent from
those of any other DSPs. Each callback remains in place until the
application calls mmi delete callback() to remove it.

Note that the callback mechanism is still in development at Release
1.50, and the interface is subject to change.

Rev 1.52, 2 May 1997 Vigra 87

Initialization and Control Functions Section 4.2

4.2.20 mmi delete callback

Prototype: int mmi delete callback (dsp t dsp, int type, int data);

Arguments:
dsp A DSP handle returned by mmi get dsp().

type Message type to unlink from callback.

data Message data word to unlink from callback.

Returns: Zero on success, or -1 on failure.

Description: This function removes a callback associated with a single DSP
message. Messages matching the specified type and data will
revert to being handled by the library queue mechanism.

A return value of zero indicates that the callback was found and
removed, and -1 is returned if no matching callback exists for this
DSP.

Note that the callback mechanism is still in development at Release
1.50, and the interface is subject to change.

88 Vigra Rev 1.52, 2 May 1997

Section 4.2 Initialization and Control Functions

4.2.21 mmi init cmd codes

Prototype: int mmi init cmd codes (mmi board t mmi);

Arguments:
mmi An MMI board handle returned by mmi open().

Returns: Zero on success, or -1 on failure.

Description: One or more of each available DiSPATCH command is allocated a
space in shared DRAM for its command code and arguments. This
function initializes the Command ID field of each of these command
blocks.

This function is called automatically during board initialization
with mmi open(), and also after any destructive RAM test proce-
dure. If an application modifies or destroys the Command ID fields,
then it must call mmi init cmd codes() to restore the contents
before any commands can be executed.

Rev 1.52, 2 May 1997 Vigra 89

Initialization and Control Functions Section 4.2

4.2.22 mmi start dribble

Prototype: int mmi start dribble (char *filename);

Arguments:
filename Output file for messages, or “-” for stdout.

Returns: Zero on success, or -1 on failure.

Description: This debugging function prints a message line to the specified
output file when any DiSPATCH message is received from a DSP.
An example message is show below:

[DSP A] ACK: 0x1FDD9A LED_CTRL

This shows the DSP that sent the message, the message type, the
data word, and the command that is referenced at that address, if
any.

This is strictly a debugging function for use during development.
Since every DSP message generates a dribble message, the com-
mand response time and library processing overhead is increased.
To disable dribble messages, call mmi end dribble().

90 Vigra Rev 1.52, 2 May 1997

Section 4.2 Initialization and Control Functions

4.2.23 mmi end dribble

Prototype: int mmi end dribble (void);

Returns: Zero on success, or -1 on failure.

Description: This disables the debugging message output started by calling
mmi start dribble(). This function closes the output file, unless
stdout was specified.

Rev 1.52, 2 May 1997 Vigra 91

Initialization and Control Functions Section 4.2

4.2.24 mmi discard resp

Prototype: int mmi discard resp (dsp t dsp);

Arguments:
dsp A DSP handle returned by mmi get dsp().

Returns: Zero on success, or -1 on failure.

Description: This function can be used to discard all unclaimed responses from
a given DSP. The library collects all responses into an internal list
until they are each found and deleted by mmi wait response().
If the application does not regularly delete each response by calling
mmi wait response(), it may be necessary to occasionally flush
the list by calling mmi discard resp().

The library will issue a warning if the response list grows to a large
size without acknowledgement. A long list of unclaimed responses
may also make the library less efficient, so the application should
flush unwanted responses when convenient.

92 Vigra Rev 1.52, 2 May 1997

Section 4.2 Initialization and Control Functions

4.2.25 mmi parse format

Prototype: int mmi parse format (char *name);

Arguments:
name A string format name to be parsed.

Returns: DiSPATCH format code on success, or -1 for unrecognized format
names.

Description: This is a simple function to return a DiSPATCH format code
for a given format name string. The case of the format string
is ignored. Since this is a common requirement for text option
parsing, it is provided by the library. No MMI or DSP handles are
required or used. At the present time, the following format names
are understood by the function:

� PCM-16

� PCM16

� PCM-8

� PCM8

� VQ

� ULAW

� ALAW

� ADPCM

� BETA

� TONEGEN

Rev 1.52, 2 May 1997 Vigra 93

Initialization and Control Functions Section 4.2

4.2.26 mmi samples per word

Prototype: int mmi samples per word (int format code);

Arguments:
format code An audio data format code.

Returns: Number of samples per word on success, or -1 for invalid format
codes.

Description: This function can be used to easily determine the number of audio
samples in one 16-bit word for a given audio data format. This is
especially useful to applications when computing buffer sizes, or
the desired length (in words) for audio recording.

The return value indicates the number of samples packed into each
16-bit word, or -1 if the specified audio format code was invalid or
has no relevant size (like TONEGEN).

94 Vigra Rev 1.52, 2 May 1997

Section 4.2 Initialization and Control Functions

4.2.27 mmi dsp command

Prototype: int mmi dsp command (dsp t dsp, void *cmd addr);

Arguments:
dsp A DSP handle returned by mmi get dsp().

cmd addr A pointer to the (virtual) start address of the
Command Block.

Returns: Zero on success, or -1 on failure.

Description: This function provides a low-level interface to the command ex-
ecution mechanism of DiSPATCH. The caller must provide the
cmd addr, a pointer to the start of the Command Block which must
reside entirely on the MMI board.

Most applications will never need to call mmi dsp command() di-
rectly, since all DiSPATCH commands have a specific library func-
tion that implicitly executes the command internally. This function
is made external only for special customizations and command pro-
totyping.

Rev 1.52, 2 May 1997 Vigra 95

DiSPATCH Command Functions Section 4.3

4.3 DiSPATCH Command Functions

4.3.1 mmi load dspmem

Prototype: int mmi load dspmem (dsp t dsp, int space, unsigned long *buffer,

int addr, int wordcount);

Arguments:
dsp A DSP handle returned by mmi get dsp().
space Specifies which one of the three DSP memory

spaces to load into.
buffer The local address of the source data on the host.
addr The DSP private RAM starting address to load

into.
wordcount The number of 24-bit DSP words to copy to the

DSP.

Returns: Zero on success, or -1 on failure.

Description: This function loads values from host memory into the DSPs private
static RAM. Since this RAM is not directly accessible by the host,
the library copies the data into shared DRAM, and then executes
a LOAD x MEM command to request that the DSP transfer it into
private memory.

The space argument must be one of X MEMORY, Y MEMORY, or
P MEMORY, as defined in “dispatch.h”.

The buffer argument points to the source data to be copied from
the host. The data in the buffer is expected to be 32-bit raw integer
values. The lower 24 bits of each source word will be loaded into
DSP memory.

The addr argument specifies the DSP private RAM start address
to load the data into. This is a 16-bit address ranging from $0000
to $FFFF. The previous contents of the private memory will be
overwritten. The wordcount parameter is the number of words to
copy to the DSP.

Commands: LOAD X
LOAD Y
LOAD P

96 Vigra Rev 1.52, 2 May 1997

Section 4.3 DiSPATCH Command Functions

4.3.2 mmi load dspmem file

Prototype: int mmi load dspmem file (dsp t dsp, int space, char *filename,

int addr);

Arguments:
dsp A DSP handle returned by mmi get dsp().

space Specifies which one of the three DSP memory
spaces to load into.

filename The path and filename of the raw data file to
read from.

addr The DSP private RAM starting address to load
into.

Returns: Zero on success, or -1 on failure.

Description: This function loads values from a data file into the DSPs private
static RAM. Since this RAM is not directly accessible by the host,
the library copies the data into shared DRAM, and then executes
a LOAD x MEM command to request that the DSP transfer it into
private memory.

The space argument must be one of X MEMORY, Y MEMORY, or
P MEMORY, as defined in “dispatch.h”.

The filename parameter specifies a data file to supply the raw
values to send to the DSP. The entire contents of the file, up to a
maximum of 64K, will be transferred to the DSPs private memory.
The file data is expected to be in raw binary format, with three
bytes for each 24-bit DSP word. The lowest 8 bits must be in the
first byte, the middle 8 bits in the second byte, and the high 8 bits
in the third byte of each word.

The addr argument specifies the DSP private RAM start address
to load the data into. This is a 16-bit address ranging from $0000
to $FFFF. The previous contents of the private memory will be
overwritten.

Commands: LOAD X
LOAD Y
LOAD P

Rev 1.52, 2 May 1997 Vigra 97

DiSPATCH Command Functions Section 4.3

4.3.3 mmi register counter

Prototype: int mmi register counter (dsp t dsp);

Arguments:
dsp A DSP handle returned by mmi get dsp().

Returns: Zero on success, or -1 on failure.

Description: This routine enables the Play Counter, as described in the
DiSPATCH Firmware User’s Manual. The play counter keeps
an updated count of the number of outgoing audio samples. The
counter value is reset to zero by the mmi register counter()
routine. After enabling the Play Counter, the current count can be
read by calling mmi read counter.

Commands: REGISTER COUNTER

98 Vigra Rev 1.52, 2 May 1997

Section 4.3 DiSPATCH Command Functions

4.3.4 mmi end counter

Prototype: int mmi end counter (dsp t dsp);

Arguments:
dsp A DSP handle returned by mmi get dsp().

Returns: Zero on success, or -1 on failure.

Description: The Play Counter should be disabled when it is not being used,
since it places an additional processing burden on the DSP. The
mmi end counter() function tells the DSP to turn off the counter.

It is allowable to call mmi end counter() when the counter is not
running.

Commands: END COUNTER

Rev 1.52, 2 May 1997 Vigra 99

DiSPATCH Command Functions Section 4.3

4.3.5 mmi reset counter

Prototype: int mmi reset counter (dsp t dsp);

Arguments:
dsp A DSP handle returned by mmi get dsp().

Returns: Zero on success, or -1 on failure.

Description: As described in Section 7.5 of the DiSPATCH Firmware User’s
Manual, The play counter begins at zero and increments until
wrap-around. The application can call mmi reset counter() at
any time to reset the value of the counter to zero.

Commands: RESET COUNTER

100 Vigra Rev 1.52, 2 May 1997

Section 4.3 DiSPATCH Command Functions

4.3.6 mmi read counter

Prototype: int mmi read counter (dsp t dsp);

Arguments:
dsp A DSP handle returned by mmi get dsp().

Returns: Counter value on success, or -1 on failure.

Description: This function fetches the current value of the play counter from
DRAM and returns it as a positive 31-bit integer value.

If a counter is not presently enabled on this DSP, then this function
will return -1.

Rev 1.52, 2 May 1997 Vigra 101

DiSPATCH Command Functions Section 4.3

4.3.7 mmi play buf

Prototype: int mmi play buf (dsp t dsp, int track, int start, int size);

Arguments:
dsp A DSP handle returned by mmi get dsp().

track The track number to use for this playback re-
quest.

start The DRAM start address of the buffer.

size The number of 16-bit words to be played.

Returns: DSP completion token on success, or -1 on failure.

Description: This function instructs the DSP to play samples from a specified
region of DRAM. The application is assumed to have already filled
that memory with audio samples of the appropriate format for
playback on this track.

The start parameter specifies the DRAM offset of the start of the
buffer. Like all DRAM addresses, this address specifies a word
offset from the beginning of DRAM. All audio buffers must start
and end on 16-bit word boundaries.

The size parameter specifies the number of 16-bit words to be
played. Depending on the data format in effect on the playback
track, this may or may not be equal to the number audio samples
in the buffer. For example, when using the PCM-16 audio format,
each word represents one sample. However, when using the PCM-
8 audio format, each word contains two 8-bit samples. The same
count will play twice as long for the PCM-8 format than for the
PCM-16 format. See mmi play format() for details on changing
the audio data format for playback.

The return value of this function is a unique token for this playback
request. See Section 4.1.7 for details. Token values are always
positive integer values. A value of -1 will be returned by the
mmi play buf() function in the event of an error.

Commands: PLAY BUFFER

102 Vigra Rev 1.52, 2 May 1997

Section 4.3 DiSPATCH Command Functions

4.3.8 mmi play subbuffers

Prototype: int mmi play subbuffers (dsp t dsp, int track, int start,

int size, int subcount,

int spacing);

Arguments:
dsp A DSP handle returned by mmi get dsp().

track The starting track number for the play requests.

start The DRAM start address of the buffers.

size The number of words in each sub-buffer.

subcount The number of sub-buffers to mix.

spacing Word offset between first sample of each sub-
buffer.

Returns: Completion token on success, or -1 on failure.

Description: This function starts playback of one or more sub-buffers to be
mixed in parallel by the DSP. A complete description of sub-buffer
mixing is given in Section 6.1 of the DiSPATCH Firmware User’s
Manual.

This function passes the given arguments directly to the DSP and
returns the completion token for the command. See Section 4.1.7
for more information about the returned completion token. In the
event of failure, a value of -1 is returned.

Commands: PLAY SUBBUFS

Rev 1.52, 2 May 1997 Vigra 103

DiSPATCH Command Functions Section 4.3

4.3.9 mmi record buf

Prototype: int mmi record buf (dsp t dsp, int start, int size);

Arguments:
dsp A DSP handle returned by mmi get dsp().

start The DRAM start address of the buffer.

size The number of 16-bit words to be recorded.

Returns: DSP completion token on success, or -1 on failure.

Description: This function instructs the DSP to record samples into a specified
region of DRAM. Any data previously in this DRAM buffer will be
overwritten by the DSP.

The start parameter specifies the DRAM offset of the start of the
buffer. Like all DRAM addresses, this address specifies a word
offset from the beginning of DRAM. All audio buffers must start
and end on 16-bit word boundaries.

The size parameter specifies the number of 16-bit words to be
recorded. The format of the incoming audio data depends on
the recording data format presently in effect on the DSP. See
mmi record format() to change the data format for recorded au-
dio.

The return value of this function is a unique token for this record
request. See Section 4.1.7 for details. Token values are always
positive integer values. A value of -1 will be returned by the
mmi record buf() function in the event of an error.

Commands: RECORD BUFFER

104 Vigra Rev 1.52, 2 May 1997

Section 4.3 DiSPATCH Command Functions

4.3.10 mmi monitor buf

Prototype: int mmi monitor buf (dsp t dsp, int start, int size);

Arguments:
dsp A DSP handle returned by mmi get dsp().

start The DRAM start address of the buffer.

size The number of 16-bit words to be monitored.

Returns: Completion token on success, or -1 on failure.

Description: This function is similar to mmi record buf(), but records the
outgoing audio signal instead of the input signal. This can be used
to make a copy of the playback audio after all processing has been
performed by DiSPATCH. For more information on the playback
monitor feature, see Section 7.4 of the DiSPATCH Firmware User’s
Manual.

The start parameter specifies the DRAM offset of the start of the
buffer. Like all DRAM addresses, this address specifies a word
offset from the beginning of DRAM. All audio buffers must start
and end on 16-bit word boundaries.

The size parameter specifies the number of 16-bit words to be
monitored. The format of the resulting audio data depends on
the monitor data format presently in effect on the DSP. Use
mmi monitor format() to change the data format for monitored
audio.

The return value of this function is a unique token for this monitor
request. See Section 4.1.7 for details. Token values are always
positive integer values. A value of -1 will be returned by the
mmi record buf() function in the event of an error.

Commands: MONITOR BUFFER

Rev 1.52, 2 May 1997 Vigra 105

DiSPATCH Command Functions Section 4.3

4.3.11 mmi play file

Prototype: int mmi play file (dsp t dsp, int track, char *filename,

int bufsize, int bufstart);

Arguments:
dsp A DSP handle returned by mmi get dsp().

track The playback track number to use.

filename The audio data filename to play from, or “-” for
stdin.

bufsize The size of the data buffer to use for playback.

bufstart The DRAM start offset for the playback data
buffer.

Returns: Zero on success, or -1 on failure.

Description: This function uses double-buffering to play an arbitrary-length
audio file on a given DSP. The track argument specifies which of
the play track is to be used for all play requests generated by this
function. The track is assumed to be prepared for playback before
calling mmi play file(). The sample rate and audio data format
must be set correctly before calling this function.

The filename specifies a system file name to provide the audio
data. The special filename of “-” indicates that the audio data is
provided via stdin instead of a data file.

The bufsize argument determines the size of the memory region
(in words) to use for the double-buffering. The bufstart argument
specifies where this region will begin in DRAM. The memory region
will be divided into two equal halves by the library for double-
buffering. It is important to select a region that will not be used by
other DSPs or simultaneous activities during playback.

This function returns after the file has finished playing.

Commands: PLAY BUFFER

106 Vigra Rev 1.52, 2 May 1997

Section 4.3 DiSPATCH Command Functions

4.3.12 mmi record file

Prototype: int mmi record file (dsp t dsp, char *filename, int length,

int bufsize, int bufstart);

Arguments:
dsp A DSP handle returned by mmi get dsp().

filename The audio data filename to record to, or “-” for
stdout.

length The length of the recording, in words.

bufsize The size of the data buffer to use for recording.

bufstart The DRAM start offset for the recording data
buffer.

Returns: Zero on success, or -1 on failure.

Description: This function uses double-buffering to record an arbitrary-length
audio file from a given DSP. The recording sample rate and audio
data format must be set correctly before calling this function.

The filename specifies a system file name to receive the audio
data. Any previous contents of the destination file will be overwrit-
ten. The special filename of “-” indicates that the audio data is to
be written to stdout instead of a data file.

The length argument determines how long the recording will be.
The length is always specified as a number of 16-bit words, regard-
less of the audio data format. The application should take into
account the sample rate, stereo mode, and audio data format when
determining the word length of the recording.

The bufsize argument determines the size of the memory region
(in words) to use for the double-buffering. The bufstart argument
specifies where this region will begin in DRAM. The memory region
will be divided into two equal halves by the library for double-
buffering. It is important to select a region that will not be used by
other DSPs or simultaneous activities during recording.

This function returns after the file has finished recording.

Commands: RECORD BUFFER

Rev 1.52, 2 May 1997 Vigra 107

DiSPATCH Command Functions Section 4.3

4.3.13 mmi set play format

Prototype: int mmi set play format (dsp t dsp, int track, int format);

Arguments:
dsp A DSP handle returned by mmi get dsp().

track The playback track number to use the new for-
mat.

format A DiSPATCH audio data format code.

Returns: Zero on success, or -1 on failure.

Description: This routine selects the audio data format for use on a given play-
back track and DSP. The new format takes effect immediately.

The format code must be one of those defined in “dispatch.h” and
documented in the DiSPATCH Firmware User’s Manual.

Commands: SET PLAY FORMAT

108 Vigra Rev 1.52, 2 May 1997

Section 4.3 DiSPATCH Command Functions

4.3.14 mmi set record format

Prototype: int mmi set record format (dsp t dsp, int format);

Arguments:
dsp A DSP handle returned by mmi get dsp().

format A DiSPATCH audio data format code.

Returns: Zero on success, or -1 on failure.

Description: This routine selects the data format for audio recorded by the
specified DSP. The new format takes effect immediately.

The format code must be one of those defined in “dispatch.h” and
documented in the DiSPATCH Firmware User’s Manual.

Commands: SET RECORD FORMAT

Rev 1.52, 2 May 1997 Vigra 109

DiSPATCH Command Functions Section 4.3

4.3.15 mmi set monitor format

Prototype: int mmi set monitor format (dsp t dsp, int format);

Arguments:
dsp A DSP handle returned by mmi get dsp().

format A DiSPATCH audio data format code.

Returns: Zero on success, or -1 on failure.

Description: This routine selects the data format for audio monitored by the
specified DSP. The new format takes effect immediately.

The format code must be one of those defined in “dispatch.h” and
documented in the DiSPATCH Firmware User’s Manual.

Commands: SET MONITOR FORMAT

110 Vigra Rev 1.52, 2 May 1997

Section 4.3 DiSPATCH Command Functions

4.3.16 mmi set play gain

Prototype: int mmi set play gain (dsp t dsp, int track, double l gain,

double r gain);

Arguments:
dsp A DSP handle returned by mmi get dsp().

track Playback track number, or MASTER PLAY GAIN.

l gain The new digital gain value for the left channel.

r gain The new digital gain value for the right channel.

Returns: Zero on success, or -1 on failure.

Description: The DSP can digitally scale the volume level of each playback track
in real-time. In addition, a global “master” play gain can be used
to digitally scale the entire outgoing audio signal.

The gain levels for the track and master gains are set by this
function. The floating-point gain parameters, l gain and r gain
can range from 0.0 to 2.0, representing the gain scale from total
silence (0% gain) to twice normal volume (200% gain). Values
outside this range will be rejected.

The track number must be a valid track number, or the defined
constant MASTER PLAY GAIN.

Note: On monophonic systems, the left and right play gains must
be identical. Only stereo boards allow different gains for the left
and right channels.

Since this gain adjustment is performed on the audio data before it
is played by the digital-to-analog converter, the analog output gain
should first be adjusted to provide the desired output signal level.
(See mmi set input gain().)

Commands: SET PLAY GAIN

Rev 1.52, 2 May 1997 Vigra 111

DiSPATCH Command Functions Section 4.3

4.3.17 mmi set record gain

Prototype: int mmi set record gain (dsp t dsp, double l gain, double r gain);

Arguments:
l gain The new digital gain value for the left channel.

r gain The new digital gain value for the right channel.

Returns: Zero on success, or -1 on failure.

Description: The DSP can digitally scale the volume level of the incoming
recorded audio in real-time.

The digital recording gain level is set by this function. The floating-
point gain parameters, l gain and r gain can range from 0.0 to
2.0, representing the gain scale from total silence (0% gain) to
twice normal volume (200% gain). Values outside this range will
be rejected.

Since this gain adjustment is performed on the audio data after
it has been digitized by the analog-to-digital converter, the analog
input gain should first be adjusted to match the input signal. (See
mmi set input gain().)

Note: On monophonic systems, the left and right record gains must
be identical. Only stereo boards allow different gains for the left
and right channels.

Commands: SET RECORD GAIN

112 Vigra Rev 1.52, 2 May 1997

Section 4.3 DiSPATCH Command Functions

4.3.18 mmi play ctrl

Prototype: int mmi play ctrl (dsp t dsp, int run);

Arguments:
dsp A DSP handle returned by mmi get dsp().

run New run state: 0 = pause, 1 = run.

Returns: Zero on success, or -1 on failure.

Description: This function instructs the DSP to pause or resume audio playback.
When playback is paused, all play requests are frozen and there
is no audio output from the DSP. When playback is then resumed,
audio output activity continues from where it was paused.

Commands: PAUSE PLAY
RESUME PLAY

Rev 1.52, 2 May 1997 Vigra 113

DiSPATCH Command Functions Section 4.3

4.3.19 mmi record ctrl

Prototype: int mmi record ctrl (dsp t dsp, int run);

Arguments:
dsp A DSP handle returned by mmi get dsp().

run New run state: 0 = pause, 1 = run.

Returns: Zero on success, or -1 on failure.

Description: This function instructs the DSP to pause or resume audio record-
ing. When recording is paused, all record requests are frozen, and
the sidetone signal is silenced. When recording is then resumed,
recording activity continues from where it was paused.

Commands: PAUSE RECORD
RESUME RECORD

114 Vigra Rev 1.52, 2 May 1997

Section 4.3 DiSPATCH Command Functions

4.3.20 mmi play position

Prototype: int mmi play position (dsp t dsp, int track, int *addr,

int *count);

Arguments:
dsp A DSP handle returned by mmi get dsp().

*addr The current DRAM position of the active play
request.

*count The remaining number of words in the active
play request.

Returns: Zero on success, or -1 on failure.

Description: This function can be used to approximate the instantaneous status
of the playback request currently being processed by the DSP. This
allows the host to check where in DRAM the outgoing audio data is
being read from, and how many words are remaining in the current
play buffer.

The addr argument must be a valid pointer to an integer variable.
The mmi play position() function will store the current DRAM
offset into this variable. The count argument must be a valid
pointer to an integer variable. This variable will indicate the num-
ber of 16-bit sample words remaining to be played from the DRAM
buffer.

Since this is an instantaneous status report, the playback may have
progressed before the host has processed the given play position.
For this reason, the reported position should be considered an ap-
proximation of the current playback status. Note, however, that
the status is always accurate when playback is paused.

Commands: PLAY POS

Rev 1.52, 2 May 1997 Vigra 115

DiSPATCH Command Functions Section 4.3

4.3.21 mmi record position

Prototype: int mmi record position (dsp t dsp, int *addr, int *count);

Arguments:
dsp A DSP handle returned by mmi get dsp().

*addr The current DRAM position of the active record
request.

*count The remaining number of words in the active
record request.

Returns: Zero on success, or -1 on failure.

Description: This function can be used to approximate the instantaneous status
of the record request currently being processed by the DSP. This
allows the host to check where in DRAM the incoming audio data
is being placed, and how many words are remaining in the current
record buffer.

The addr argument must be a valid pointer to an integer vari-
able. The mmi record position() function will store the current
DRAM offset into this variable. The count argument must be a
valid pointer to an integer variable. This variable will indicate
the number of 16-bit sample words remaining to be placed into the
DRAM buffer.

Since this is an instantaneous status report, the recording may
have progressed before the host has processed the given record po-
sition. For this reason, the reported position should be considered
an approximation of the current recording status. Note, however,
that the status is always accurate when recording is paused.

Commands: RECORD POS

116 Vigra Rev 1.52, 2 May 1997

Section 4.3 DiSPATCH Command Functions

4.3.22 mmi monitor position

Prototype: int mmi monitor position (dsp t dsp, int *addr, int *count);

Arguments:
dsp A DSP handle returned by mmi get dsp().

*addr The current DRAM position of the active moni-
tor request.

*count The remaining number of words in the active
monitor request.

Returns: Zero on success, or -1 on failure.

Description: This function can be used to approximate the instantaneous status
of the playback monitor request currently being processed by the
DSP. This allows the host to check where in DRAM the monitored
audio data is being written to, and how many words are remaining
in the current monitor buffer.

The addr argument must be a valid pointer to an integer vari-
able. The mmi monitor position() function will store the cur-
rent DRAM offset into this variable. The count argument must be
a valid pointer to an integer variable. This variable will indicate
the number of 16-bit sample words remaining to be stored into the
DRAM buffer.

Since this is an instantaneous status report, the playback and
monitoring may have progressed before the host has processed
the given monitor position. For this reason, the reported posi-
tion should be considered an approximation of the current monitor
status. Note, however, that the status is always accurate when
playback is paused.

Commands: MONITOR POS

Rev 1.52, 2 May 1997 Vigra 117

DiSPATCH Command Functions Section 4.3

4.3.23 mmi abort track

Prototype: int mmi abort track (dsp t dsp, int track);

Arguments:
dsp A DSP handle returned by mmi get dsp().

track Playback track number to abort.

Returns: Zero on success, or -1 on failure.

Description: This aborts all pending playback requests on the specified track.
No completion messages are sent for the aborted track. Pending
record requests and playback requests on other tracks are unaf-
fected by this function.

Commands: ABORT TRACK

118 Vigra Rev 1.52, 2 May 1997

Section 4.3 DiSPATCH Command Functions

4.3.24 mmi abort all play

Prototype: int mmi abort all play (dsp t dsp);

Arguments:
dsp A DSP handle returned by mmi get dsp().

Returns: Zero on success, or -1 on failure.

Description: This aborts all pending playback requests on all tracks. No com-
pletion messages are sent for the aborted play requests.

Commands: ABORT ALL PLAY

Rev 1.52, 2 May 1997 Vigra 119

DiSPATCH Command Functions Section 4.3

4.3.25 mmi abort record

Prototype: int mmi abort record (dsp t dsp);

Arguments:
dsp A DSP handle returned by mmi get dsp().

Returns: Zero on success, or -1 on failure.

Description: This function aborts all pending record requests. No completion
messages are sent for the aborted record requests.

Commands: ABORT RECORD

120 Vigra Rev 1.52, 2 May 1997

Section 4.3 DiSPATCH Command Functions

4.3.26 mmi abort monitor

Prototype: int mmi abort monitor (dsp t dsp);

Arguments:
dsp A DSP handle returned by mmi get dsp().

Returns: Zero on success, or -1 on failure.

Description: This function aborts all pending monitor requests. No completion
messages are sent for the aborted monitor requests.

Commands: ABORT MONITOR

Rev 1.52, 2 May 1997 Vigra 121

DiSPATCH Command Functions Section 4.3

4.3.27 mmi led ctrl

Prototype: int mmi led ctrl (dsp t dsp, int led id, int state);

Arguments:
dsp A DSP handle returned by mmi get dsp().

led id Which LED to control, counting from 0.

state The new state for the specified LED: 1 = on, 0 =
off.

Returns: Zero on success, or -1 on failure.

Description: This function asks the DSP to change the state of one front-panel
LED indicator.

On the MMI-420, each DSP controls one front-panel LED. The
led id parameter must always be zero for this model.

On the MMI-210 and MMI-105 boards, there are two LEDs. Both of
the front-panel LEDs must be controlled by DSP A. DSP B should
not be used to set the LED states. The green LED is specified by
led id zero, while the red LED is led id one.

Commands: LED CTRL

122 Vigra Rev 1.52, 2 May 1997

Section 4.3 DiSPATCH Command Functions

4.3.28 mmi set input gain

Prototype: int mmi set input gain (dsp t dsp, int gain);

Arguments:
dsp A DSP handle returned by mmi get dsp().

gain A gain value between 0 and 255, inclusive.

Returns: Zero on success, or -1 on failure.

Description: This function sets the analog input gain level for the analog-to-
digital hardware. The gain level may be changed at any time, and
the new gain level takes effect immediately.

The actual analog gain depends on the MMI model in use, but
all boards use the same range of 0 to 255, with higher numbers
resulting in more signal gain.

Commands: SET INPUT GAIN

Rev 1.52, 2 May 1997 Vigra 123

DiSPATCH Command Functions Section 4.3

4.3.29 mmi set output gain

Prototype: int mmi set output gain (dsp t dsp, int gain);

Arguments:
dsp A DSP handle returned by mmi get dsp().

gain A gain value between 0 and 255, inclusive.

Returns: Zero on success, or -1 on failure.

Description: This function sets the analog output gain level for the digital-to-
analog hardware. The gain level may be changed at any time, and
the new gain level takes effect immediately.

The actual analog gain depends on the MMI model in use, but
all boards use the same range of 0 to 255, with higher numbers
resulting in more signal gain.

Commands: SET OUTPUT GAIN

124 Vigra Rev 1.52, 2 May 1997

Section 4.3 DiSPATCH Command Functions

4.3.30 mmi set mixer

Prototype: int mmi set mixer (dsp t dsp, int setting);

Arguments:
dsp A DSP handle returned by mmi get dsp().

setting The new analog mixer setting.

Returns: Zero on success, or -1 on failure.

Description: Some MMI models have multiple analog output ports and a pro-
grammable analog router. This router can direct the audio output
of one or more DSPs to a given analog audio port on the front panel.

For example, a mixer may be configured to direct the combined
audio output of DSP A and DSP B to the audio output jack labeled
OUTPUT D. At the same time, the output from DSP C could be
directed to OUTPUT C and OUTPUT A.

The mmi set mixer() function configures the programmable
mixer on boards with such hardware. The dsp argument selects
a single DSP to control. The routing of the audio from this DSP
is specified by the bits in setting. Each bit corresponds to one
available analog output port, starting with the lowest bit, as docu-
mented in the DiSPATCH Firmware User’s Manual.

For example, to send the signal to OUTPUT B only, the value of
setting would be 0x2. To send to OUTPUT A and OUTPUT C,
pass a value of 0x5, and a value of 0xF selects all of the first four
output ports.

Commands: ROUTE OUTPUT

Rev 1.52, 2 May 1997 Vigra 125

DiSPATCH Command Functions Section 4.3

4.3.31 mmi set speed change

Prototype: int mmi set speed change (dsp t dsp, int percent);

Arguments:
dsp A DSP handle returned by mmi get dsp().

percent The new relative playback speed, in percent.

Returns: Zero on success, or -1 on failure.

Description: This controls the real-time pitch-corrected speed-change algorithm
performed by the DSP. The algorithm is capable of slowing the
speed of playback to 50% of normal speed, or accellerating it to
200% of normal speed.

The percent argument specifies the new speed factor, relative to
normal speed. A percent value of 75 instructs the DSP to play
all audio at 75% of normal speed, slowing it down. The percent
parameter must be between 50 and 200, inclusive.

The speed-change algorithm is automatically disabled by the DSP
when the percent value is exactly 100.

Commands: SPEED CHANGE

126 Vigra Rev 1.52, 2 May 1997

Section 4.3 DiSPATCH Command Functions

4.3.32 mmi set resample

Prototype: int mmi set resample (dsp t dsp, int multiplier);

Arguments:
dsp A DSP handle returned by mmi get dsp().

multiplier Resampling factor (1 or 4).

Returns: Zero on success, or -1 on failure.

Description: This controls the real-time multi-rate filter used to lower the
effective audio sample rate for playback and recording. This filter
provides the transparent emulation of sample rates that are exactly
one quarter of the hardware settings.

The multiplier argument specifies the new sample rate factor.
A value of 4 will divide the hardware sample rate by four, while
a multiplier of 1 will disable the multi-rate filter and return to
the normal (hardware) sample rate.

See the RESAMPLE command documentation in the DiSPATCH
Firmware User’s Manual for important usage details and restric-
tions.

Commands: RESAMPLE

Rev 1.52, 2 May 1997 Vigra 127

DiSPATCH Command Functions Section 4.3

4.3.33 mmi set sidetone

Prototype: int mmi set sidetone (dsp t dsp, double sidetone);

Arguments:
dsp A DSP handle returned by mmi get dsp().

sidetone New sidetone gain level from 0.0 to 2.0, inclu-
sive.

Returns: Zero on success, or -1 on failure.

Description: This function enables or disables the audio sidetone feature and
sets the sidetone gain level. When sidetone gain is set to be greater
than 0.0, some amount of the incoming signal is directly routed to
the digital output. This pass-through signal has very low latency
and is well suited for headset voice feedback.

The sidetone gain value can range from 0.0 to 2.0 (inclusive),
representing the range between silence (no sidetone), to a signal
amplification of 200%. A sidetone value of 1.0 passes the in-
coming signal through unchanged. This loopback setting is useful
for adjusting the analog input and output gain levels for optimum
performance.

When the gain is set to 0.0, the sidetone feature is automatically
disabled by the DSP to conserve processing bandwidth.

Commands: SET SIDETONE

128 Vigra Rev 1.52, 2 May 1997

Section 4.3 DiSPATCH Command Functions

4.3.34 mmi transform buffer

Prototype: int mmi transform buffer (dsp t dsp, int src fmt, int src addr,

int src count, int dest fmt,

int dest addr, int subcount, int spacing);

Arguments:
dsp A DSP handle returned by mmi get dsp().

src fmt The format code of the source data.

src addr The DRAM address offset of the source buffer.

src count The number of data words in the source buffer.

dest fmt The format code for the resulting data.

dest addr The DRAM start address of the destination
buffer.

subcount The number of sub-buffers in the input buffer.

spacing Word offset between first sample of each sub-
buffer.

Returns: Number of resulting data words, or -1 on failure.

Description: This function asks the DSP to convert a block of audio data in
DRAM from one data format into a different format. Multiple audio
buffers can be mixed in parallel to produce one converted block of
data. All audio processing is performed in-RAM, with no analog
audio input or output. The conversion runs as fast as possible,
and this function does not return until the entire buffer has been
converted.

The transform arguments and operation are described in detail in
the DiSPATCH Firmware User’s Manual, under TRANSFORM.

The DSP will suspend all normal play and record processing while
the conversion is in progress. Also, note that the source and desti-
nation buffer regions should not overlap in memory.

Commands: TRANSFORM

Rev 1.52, 2 May 1997 Vigra 129

DiSPATCH Command Functions Section 4.3

4.3.35 mmi transform file

Prototype: int mmi transform file (dsp t dsp, int src fmt, char *src filename,

int dest fmt, char *dest filename);

Arguments:
dsp A DSP handle returned by mmi get dsp().

src fmt Audio data format for the source file.

src filename Filename of audio source data to be converted.

dest fmt Audio data format for the destination file.

dest filename Filename for converted output data.

Returns: Zero on success, or -1 on failure.

Description: This is a convenient function to convert a given audio file from one
DiSPATCH format to another. The library opens both files, reads
one block at a time into DRAM, calls mmi transform buffer(),
and writes it to the output file.

The entire file is converted and there is no limit on file length.
Note that the library uses a region of DRAM starting at address
zero, so any previous contents in that region are destroyed. The
size of this transfer region (presently 240,000 words) is defined in
“lib local.h” as TRANSFORM BLOCKSIZE.

Commands: TRANSFORM

130 Vigra Rev 1.52, 2 May 1997

Section 4.3 DiSPATCH Command Functions

4.3.36 mmi count buffers

Prototype: int mmi count buffers (dsp t dsp, int *play, int *rec,

int *monitor);

Arguments:
dsp A DSP handle returned by mmi get dsp().

*play The number of pending play requests.

*rec The number of pending record requests.

*monitor The number of pending monitor requests.

Returns: Zero on success, or -1 on failure.

Description: This function reports the number of requests that are currently
queued for processing. The counts include the buffer currently in
progress.

The value of the play variable will be set to the number of playback
buffers. The value of record and monitor will reflect the number
of pending record and monitor requests, respectively.

Commands: COUNT BUFFERS

Rev 1.52, 2 May 1997 Vigra 131

DiSPATCH Command Functions Section 4.3

4.3.37 mmi clip led

Prototype: int mmi clip led (dsp t dsp, int ceiling);

Arguments:
dsp A DSP handle returned by mmi get dsp().

ceiling Peak sample value, or zero to disable.

Returns: Zero on success, or -1 on failure.

Description: This function enables or disables the clipping LED indicator. The
clipping LED can be used to help set the audio input level to maxi-
mize the dynamic range while avoiding distortion from clipping.

The value of the ceiling argument sets the minimum 16-bit sam-
ple value required to light the front-panel LED for dsp. A ceiling
value of zero will disable the clipping indicator and return the LED
to manual control.

See the CLIP LED command documentation in the DiSPATCH
Firmware User’s Manual for usage restrictions and suggested
ceiling values.

Commands: CLIP LED

132 Vigra Rev 1.52, 2 May 1997

Section 4.3 DiSPATCH Command Functions

4.3.38 mmi enable measurements

Prototype: int mmi enable measurements (dsp t dsp);

Arguments:
dsp A DSP handle returned by mmi get dsp().

Returns: Zero on success, or -1 on failure.

Description: This function enables continuous input peak and bias measure-
ments on the DSP. This processing is disabled by default. Be-
fore any calls to mmi input peak() or mmi input bias() can
be made, these measurements must be enabled by a call to
mmi enable measurements().

When input measurements are no longer needed, they should be
disabled with mmi disable measurements() for efficiency. Any
extraneous calls to mmi disable measurements() while mea-
surements are disabled will be safely ignored.

Note that no measurements are computed while recording is
paused.

Commands: ENABLE MEASURE

Rev 1.52, 2 May 1997 Vigra 133

DiSPATCH Command Functions Section 4.3

4.3.39 mmi disable measurements

Prototype: int mmi disable measurements (dsp t dsp);

Arguments:
dsp A DSP handle returned by mmi get dsp().

Returns: Zero on success, or -1 on failure.

Description: This function should be called to inhibit the measurement com-
putations if input measurements have been enabled and they are
no longer needed. Measurements can later be re-enabled by an-
other call to mmi enable measurements(). Any extraneous calls
to mmi disable measurements() while measurements are dis-
abled will be safely ignored.

Commands: DISABLE MEASURE

134 Vigra Rev 1.52, 2 May 1997

Section 4.3 DiSPATCH Command Functions

4.3.40 mmi input peak

Prototype: int mmi input peak (dsp t dsp, double *left, double *right);

Arguments:
dsp A DSP handle returned by mmi get dsp().

left Peak input level of the left channel (0.0 to 1.0).

right Peak input level of the right channel (0.0 to
1.0).

Returns: Zero on success, or -1 on failure.

Description: This function provides the peak input signal level for each of the
left and right audio channels. During mono operation, both of these
values will be equal. The floating-point signal levels range from
0.0 (representing silence), to 1.0 (fully saturated).

The input peak level represents the single highest amplitude sam-
ple since the last call to mmi input peak(). This information can
be used to warn the user of potential clipping, or to simulate a
VU-meter.

This function is only accepted after input measurements have been
enabled with mmi enable measurements().

Commands: INPUT PEAK

Rev 1.52, 2 May 1997 Vigra 135

DiSPATCH Command Functions Section 4.3

4.3.41 mmi input bias

Prototype: int mmi input bias (dsp t dsp, int *left, int *right, int *samples);

Arguments:
dsp A DSP handle returned by mmi get dsp().

left Input bias of the left channel (0.0 to 1.0).

right Input bias of the right channel (0.0 to 1.0).

samples Number of samples used in the bias computa-
tion.

Returns: Zero on success, or -1 on failure.

Description: This function returns the input bias level for each of the left and
right audio channels. During mono operation, both of these values
will be equal.

The reported bias levels range from -32768 to 32767. The ideal
bias level for silent input is 0. The bias levels are an arithmetic
mean value of a large number of sequential input samples. The
number of input samples used in the bias computation is returned
in the samples variable.

This function is only accepted after input measurements have been
enabled with mmi enable measurements().

Commands: INPUT BIAS

136 Vigra Rev 1.52, 2 May 1997

Section 4.3 DiSPATCH Command Functions

4.3.42 mmi signal detect

Prototype: int mmi signal detect (dsp t dsp, int detector,

double voice thresh, double energy thresh,

int up notify, int down notify,

func t *callback, void *data);

Arguments:
dsp A DSP handle returned by mmi get dsp().

detector Which detector to configure (0 through 3).

voice thresh The required ratio of voice-band to total energy.

energy thresh The required amount of total energy.

up notify The number of energy periods to trigger an UP
transition.

down notify The number of energy periods to trigger a
DOWN transition.

callback A function to be called when a transition is de-
tected, or NULL.

data Optional user-defined argument to be passed to
callback.

Returns: Zero on success, or -1 on failure.

Description: This function configures one of the available signal detectors in
DiSPATCH. The application is free to change the parameters of
any detector at any time during operation.

There are several independent signal detectors available on each
DSP. The number of available detectors is defined as the constant
NUM DETECTORS in “dispatch.h”. This is currently 4. Each de-
tector can have unique parameters and callbacks.

For a detailed description of the four signal detection control pa-
rameters, consult Section 8.2 of the DiSPATCH Firmware User’s
Manual. To disable a signal detector, set both the voice thresh
and the energy thresh to zero.

The callback parameter is an optional application-defined call-
back function to be called whenever DiSPATCH detects a signal
state transition. This function will be called by the library as fol-
lows:

Rev 1.52, 2 May 1997 Vigra 137

DiSPATCH Command Functions Section 4.3

callback (detector, state, address, data);

The three arguments passed to the function are:

detector: This is the number of the detector that has reported a
signal transition.

state: This is the new state of the detector. A value of 1 indicates
the signal is now present, while 0 indicates not-present.

address: This is the address offset in shared DRAM where the
transition took place, if recording is in progress. This value is
undefined if no recording is in progress.

data: Arbitrary data pointer to be used by the application. This is
usually a pointer to a user-defined data structure with infor-
mation concerning the signal detector or DSP.

The return value of the callback function, if any, is ignored. If the
callback function address is specified as NULL, then no function will
be called on transition.

Commands: SIGNAL DETECT

138 Vigra Rev 1.52, 2 May 1997

Section 4.3 DiSPATCH Command Functions

4.3.43 mmi set equalizer

Prototype: int mmi set equalizer (dsp t dsp, int enable, int level[10]);

Arguments:
dsp A DSP handle returned by mmi get dsp().

enable Enable (1) or disable (0) the equalizer feature.

level An array of ten integers, representing the gain
for each band.

Returns: Zero on success, or -1 on failure.

Description: This function controls the real-time frequency equalizer. The
operation and restrictions of this feature are documented in the
DiSPATCH Firmware User’s Manual, under the EQUALIZER com-
mand.

The enable flag controls whether the equalizer is enabled or dis-
abled. Because the equalizer is computationally intensive, it should
be disabled when not in use.

The level argument is an array of exactly ten integers, each rang-
ing from -6553 to 32767. These represent the gain setting of each
of the ten frequency bands, starting with the lowest frequency (31
Hz).

Commands: EQUALIZER

Rev 1.52, 2 May 1997 Vigra 139

DiSPATCH Command Functions Section 4.3

4.3.44 mmi set reverb

Prototype: int mmi set reverb (dsp t dsp, double gain, int delay);

Arguments:
dsp A DSP handle returned by mmi get dsp().

gain Feedback gain setting, from 0.0 to 2.0.

delay Length of the digital delay line (0 to 2046).

Returns: Zero on success, or -1 on failure.

Description: This function controls the crude and simple “reverb” function in the
DiSPATCH play processor. The gain parameter selects how much
of the outgoing signal is placed in the delay loop, and the delay
argument specifies how long (in samples) the feedback delay will
be.

Refer to the REVERB command description in the DiSPATCH
Firmware User’s Manual for more information on the reverb fea-
ture.

Commands: REVERB

140 Vigra Rev 1.52, 2 May 1997

Section 4.3 DiSPATCH Command Functions

4.3.45 mmi select input

Prototype: int mmi select input (dsp t dsp, int input);

Arguments:
dsp A DSP handle returned by mmi get dsp().

input Audio input source; SOURCE MIC for microphone
or SOURCE LINE for Line-In.

Returns: Zero on success, or -1 on failure.

Description: On audio boards with selectable analog input sources, this function
selects which audio source will be used during recording. The avail-
able sources are represented by the SOURCE MIC and SOURCE LINE
constants defined in “dispatch.h”, representing microphone in-
put and line-level input, respectively.

Commands: SELECT INPUT

Rev 1.52, 2 May 1997 Vigra 141

DiSPATCH Command Functions Section 4.3

4.3.46 mmi stereo mode

Prototype: int mmi stereo mode (dsp t dsp, int enable);

Arguments:
dsp A DSP handle returned by mmi get dsp().

enable 1 for stereo mode, 0 for mono.

Returns: Zero on success, or -1 on failure.

Description: Some MMI boards support a sample-interleaved stereo mode of
operation. On those boards, stereo can be enabled or disabled with
this function.

When stereo is enabled, the left and right audio channels will re-
ceive alternating samples, beginning with the left channel. All au-
dio buffers are assumed to be in sample-interleaved format when
stereo mode is enabled.

Because DiSPATCH does not yet support full algorithmic process-
ing of stereo data, only PCM sample formats are supported in stereo
mode. The allowed formats include PCM-16, PCM-8, �-Law, and
A-Law. All other formats are restricted to monophonic operation.

Note that stereo mode effectively doubles the number of samples
for a given time period, and likewise doubles the required compu-
tational demands on the DSP. Be aware that stereo operation at
high sample rates will leave little remaining bandwidth for other
DiSPATCH features.

On the MMI-210, stereo operation requires that only one DSP is
operational. The other DSP must be left in the reset state and
must not be initialized or used.

Commands: STEREO MODE

142 Vigra Rev 1.52, 2 May 1997

Section 4.3 DiSPATCH Command Functions

4.3.47 mmi query stereo

Prototype: int mmi query stereo (dsp t dsp);

Arguments:
dsp A DSP handle returned by mmi get dsp().

Returns: Zero for mono, one for stereo, or -1 on error.

Description: This command can be used to determine if the DSP is currently
operating in stereophonic mode. If DiSPATCH is operating in mono
(the default), a zero is returned. If stereo is engaged, a one is
returned.

QUERY STATE

Rev 1.52, 2 May 1997 Vigra 143

DiSPATCH Command Functions Section 4.3

4.3.48 mmi filter play

Prototype: int mmi filter play (dsp t dsp, int enable);

Arguments:
dsp A DSP handle returned by mmi get dsp().

enable Enable (1), or disable (0) the playback FIR filter.

Returns: Zero on success, or -1 on failure.

Description: This function enables or disables the playback FIR filter. The filter
is a simple user-definable finite impulse response (FIR) filter that
is applied to all outgoing audio data. The FIR filter coefficients
and number of taps must be declared with mmi load play fir()
before enabling the filter.

The play filter can not be used when stereo mode is enabled.

Commands: PLAY FIR

144 Vigra Rev 1.52, 2 May 1997

Section 4.3 DiSPATCH Command Functions

4.3.49 mmi filter record

Prototype: int mmi filter record (dsp t dsp, int enable);

Arguments:
dsp A DSP handle returned by mmi get dsp().

enable Enable (1), or disable (0) the recording FIR filter.

Returns: Zero on success, or -1 on failure.

Description: This function enables or disables the recording FIR filter. The filter
is a simple user-definable FIR filter that is applied to the incoming
audio data stream. The FIR filter coefficients and number of taps
must be declared with mmi load record fir() before enabling
the filter.

The record filter can not be used when stereo mode is enabled.

Commands: RECORD FIR

Rev 1.52, 2 May 1997 Vigra 145

DiSPATCH Command Functions Section 4.3

4.3.50 mmi load play fir

Prototype: int mmi load play fir (dsp t dsp, char *coeff file);

Arguments:
dsp A DSP handle returned by mmi get dsp().

coeff file Name of the filter coefficient data file.

Returns: Zero on success, or -1 on failure.

Description: The playback FIR filter requires that a set of filter coefficients be
loaded by the application. These coefficients directly control the
characteristics of the FIR filter, and are usually generated by a
separate filter design program. The play and record FIR filters
have independent control parameters and coefficients.

The named data file is expected to contain the raw 24-bit values
for the filter coefficients, in high/middle/low byte order. The entire
contents of the data file will be read into DRAM and transferred to
the DSP. The number of filter coefficients (taps) is determined from
the length of the data file (i.e. length in bytes divided by three).

The FIR filter may be have from 1 to 256 taps. Excessively big data
files will cause an error (-1) to be returned.

Commands: PLAY FIR

146 Vigra Rev 1.52, 2 May 1997

Section 4.3 DiSPATCH Command Functions

4.3.51 mmi load record fir

Prototype: int mmi load record fir (dsp t dsp, char *coeff file);

Arguments:
dsp A DSP handle returned by mmi get dsp().

coeff file Name of the filter coefficient data file.

Returns: Zero on success, or -1 on failure.

Description: The record FIR filter requires that a set of filter coefficients be
loaded by the application. These coefficients directly control the
characteristics of the FIR filter, and are usually generated by a
separate filter design program. The play and record FIR filters
have independent control parameters and coefficients.

The named data file is expected to contain the raw 24-bit values
for the filter coefficients, in high/middle/low byte order. The entire
contents of the data file will be read into DRAM and transferred to
the DSP. The number of filter coefficients (taps) is determined from
the length of the data file (i.e. length in bytes divided by three).

The FIR filter may be have from 1 to 256 taps. Excessively big data
files will cause an error (-1) to be returned.

Commands: RECORD FIR

Rev 1.52, 2 May 1997 Vigra 147

DiSPATCH Command Functions Section 4.3

4.3.52 mmi set srate

Prototype: int mmi set srate (dsp t dsp, int play, int record);

Arguments:
dsp A DSP handle returned by mmi get dsp().

play The new playback sample rate (in Hertz).

record The new recording sample rate (in Hertz).

Returns: Zero on success, or -1 on failure.

Description: This function sets the playback and recording sample rates. Since
each MMI board has unique provisions and restrictions for sample
rates, this function will validate the specified sample rates and
return -1 if the values are not permitted for the given model. If
the sample rates are acceptable, they will be passed to the DSP and
put into use. See hardware description sections of the DiSPATCH
Firmware User’s Manual for more information about the allowable
sample rates for a specific MMI model.

A special sample rate value of -1 can be passed to mmi set srate
as a wild-card for either the play or the record argument. The
library will then select an acceptable sample rate to pair with the
specified rate. For example, to select an 8000 Hz playback rate
without regard for the record rate, use 8000 for play, and -1 for
record.

Commands: SET SRATE

148 Vigra Rev 1.52, 2 May 1997

Section 4.3 DiSPATCH Command Functions

4.3.53 mmi request srate

Prototype: int mmi request srate (dsp t dsp, int play, int record);

Arguments:
dsp A DSP handle returned by mmi get dsp().

play The sample rate for playback (in Hertz).

record The sample rate for recording (in Hertz).

Returns: Zero on success, or -1 on failure.

Description: This function asks the DSP to select the specified sample rates.
Applications should call the mmi set srate() function instead,
which will ensure that the requested sample rates are valid for the
MMI model in use.

Commands: SET SRATE

Rev 1.52, 2 May 1997 Vigra 149

DiSPATCH Command Functions Section 4.3

4.3.54 mmi set pnm

Prototype: int mmi set pnm (dsp t dsp, int p, int n, int m);

Arguments:
dsp A DSP handle returned by mmi get dsp().

p A 16-bit value to be sent to the programmable
frequency synthesizer.

n A 16-bit value to be sent to the programmable
frequency synthesizer.

m A 16-bit value to be sent to the programmable
frequency synthesizer.

Returns: Zero on success, or -1 on failure.

Description: This function is rendered obsolete by the mmi set srate() func-
tion, which allows the DSP to compute and use precise P, N, and M
values for a given frequency.

This function is left in the library for experimental use or non-
standard frequency generation hardware. The three arguments
are passed directly to the DSP, which then sends them to the
programmable frequency synthesizer (PFS) upon execution of the
SET PNM command.

Commands: SET PNM

150 Vigra Rev 1.52, 2 May 1997

Section 4.3 DiSPATCH Command Functions

4.3.55 mmi play tone

Prototype: int mmi play tone (dsp t dsp, int track, int srate,

mmi tone t tone);

Arguments:
dsp A DSP handle returned by mmi get dsp().

track The playback track number to generate the tone.

srate The current playback sample rate (in Hertz).

tone The structure describing the tone to be gener-
ated.

Returns: Zero on success, or -1 on failure.

Description: This function controls tone generation. The DiSPATCH Tone
Generation Manual describes the operation and parameters of tone
generation, as well as the library interface to this feature.

The track used to generate the tone must be previously configured
(via mmi set play format()) for the TONEGEN audio data format.
The srate argument must reflect the current playback sample
rate in Hertz. Note that stereo operation does not permit tone
generation.

The tone argument is a pointer to a struct mmi tone. The fields
of this structure fully specify a tone to be generated. This structure
is defined by “dispatch.h”. See the DiSPATCH Tone Generation
Manual for details on the member fields of this structure.

Commands: TONEGEN

Rev 1.52, 2 May 1997 Vigra 151

DiSPATCH Command Functions Section 4.3

4.3.56 mmi ramtone

Prototype: int mmi ramtone (dsp t dsp, int track, int format,

int address, int count);

Arguments:
dsp A DSP handle returned by mmi get dsp().

track The playback track number to provide the tone
parameters.

format A DiSPATCH audio data format code for gener-
ated data.

address The DRAM start address of the destination
buffer.

count The number of audio samples to generate.

Returns: Number of words generated, or -1 on failure.

Description: This function generates a tone into DRAM. Instead of playing the
specified audio tone, the sample data is written to a specified region
of shared memory. The host can then read it from DRAM or play
this block of tone data at a later time (using PLAY BUFFER).

The DiSPATCH Tone Generation Manual describes the operation
and parameters of tone generation, as well as the library interface
to this feature.

The track passed to mmi ramtone() must be previously config-
ured via mmi play tone() for the desired tone characteristics. If
that track is not configured for the TONEGEN audio data format,
then the tone parameters will not have an impact on any other
playback.

The audio data format specified to mmi ramtone() selects which
audio data representation will be used for the data written to
DRAM.

The address and count parameters specify the region of DRAM to
be used for tone data. Note that the count is specified in samples,
not output words. Upon success, the mmi ramtone() function re-
turns the number of generated words. This may or may not equal
the number of samples, depending on the data format.

152 Vigra Rev 1.52, 2 May 1997

Section 4.3 DiSPATCH Command Functions

If the length of the tone, as specified in the tone structure, is less
than the requested count of samples, then the tone will finish
early, and the return value will indicate that fewer words were
generated than requested. This allows the host to repeatedly call
mmi ramtone() until a tone of unknown length is finished playing.
Put another way, the number of samples generated by a call to
mmi ramtone() is the smaller of the remaining tone length and
the specified count.

All active playback and recording are paused while the tone gen-
eration is in progress. This function will not return until the re-
quested tone buffer is complete. This is similar to the behavior of
the mmi transform() function.

Commands: RAMTONE

Rev 1.52, 2 May 1997 Vigra 153

DiSPATCH Command Functions Section 4.3

4.3.57 mmi end tone

Prototype: int mmi end tone (dsp t dsp, int track);

Arguments:
dsp A DSP handle returned by mmi get dsp().

track The track number of the tone.

Returns: Zero on success, or -1 on failure.

Description: This function terminates any synthesized tone that may be playing
on the specified track. The tone is terminated immediately upon
execution, and no completion token is returned for the tone.

This function simply changes the length of the tone to zero, effec-
tively terminating it.

Commands: TONEGEN

154 Vigra Rev 1.52, 2 May 1997

Section 4.3 DiSPATCH Command Functions

4.3.58 mmi load table

Prototype: int mmi load table (dsp t dsp, int table, int addr);

Arguments:
dsp A DSP handle returned by mmi get dsp().

table The wavetable number.

addr The DRAM start address of the new 256 table
values.

Returns: Zero on success, or -1 on failure.

Description: This function copies a block of 256 sample values (each 16-bit)
from DRAM into the DSPs internal wavetables, overwriting the
previous table contents.

The format of the wavetable data is described in the DiSPATCH
Firmware User’s Manual, in the LOAD TABLE command descrip-
tion.

Commands: LOAD TABLE

Rev 1.52, 2 May 1997 Vigra 155

DiSPATCH Command Functions Section 4.3

4.3.59 mmi waveshape

Prototype: int mmi waveshape (dsp t dsp, int table);

Arguments:
dsp A DSP handle returned by mmi get dsp().

table Which table to use for wave mapping.

Returns: Zero on success, or -1 on failure.

Description: This function controls the waveshaping post-processing play mod-
ule. This is presently an experimental and unsupported feature for
remapping waveform sample values.

The table number may be any of the available wavetables, or -1 to
disable the waveshaping module.

Commands: WAVESHAPE

156 Vigra Rev 1.52, 2 May 1997

Section 4.3 DiSPATCH Command Functions

4.3.60 mmi fetch error

Prototype: int mmi fetch error (dsp t dsp);

Arguments:
dsp A DSP handle returned by mmi get dsp().

Returns: Zero on success, or -1 on failure.

Description: This routine will execute the FETCH ERROR DiSPATCH command
and print the current DSP error status. The mmi dsp command()
function calls this routine automatically whenever a DSP command
returns an with an error condition. User applications can choose
to explicitly read the error status by calling this function directly.

If a second error condition results from attempting to execute the
FETCH ERROR command, then the mmi fetch error() function
will return -1 instead of recursing. If the FETCH ERROR command
fails, then there is an unrecoverable condition in the DiSPATCH
protocol, most likely caused by corrupted Command IDs in upper
DRAM.

Commands: FETCH ERROR

Rev 1.52, 2 May 1997 Vigra 157

DiSPATCH Command Functions Section 4.3

4.3.61 mmi enable mail

Prototype: int mmi enable mail (dsp t dsp);

Arguments:
dsp A DSP handle returned by mmi get dsp().

Returns: Zero on success, or -1 on failure.

Description: The message mailbox is a simple text message passing system
used during the development and debugging of the DiSPATCH
DSP firmware. Host applications should not enable mail by calling
this function.

Mail messages are out-of-band data received from the DSP during
DiSPATCH operation. By default, mail messages will not be sent
to the host unless requested.

Commands: ENABLE MAIL

158 Vigra Rev 1.52, 2 May 1997

Section 4.3 DiSPATCH Command Functions

4.3.62 mmi disable mail

Prototype: int mmi disable mail (dsp t dsp);

Arguments:
dsp A DSP handle returned by mmi get dsp().

Returns: Zero on success, or -1 on failure.

Description: This routine will tell the DSP to inhibit any mailbox messages
that may have been enabled by mmi enable mail(). This is the
default operating state for each DSP upon initialization.

Commands: DISABLE MAIL

Rev 1.52, 2 May 1997 Vigra 159

DiSPATCH Command Functions Section 4.3

4.3.63 mmi probe firmware

Prototype: int mmi probe firmware (dsp t dsp);

Arguments:
dsp A DSP handle returned by mmi get dsp().

Returns: Zero if the specified DSP is correctly running the DiSPATCH
firmware, or -1 if it is not.

Description: This function performs a quick test to verify that the DSP is booted
and running the DiSPATCH firmware program. If the library has
not booted the specified DSP, then this function will immediately
return -1.

If the DSP state indicates that the firmware should be running,
then the LSHIFT command will be executed and the results vali-
dated. If the result is correct, then a zero will be returned to the
application.

Commands: LSHIFT

160 Vigra Rev 1.52, 2 May 1997

Section 4.3 DiSPATCH Command Functions

4.3.64 mmi get version

Prototype: int mmi get version (dsp t dsp);

Arguments:
dsp A DSP handle returned by mmi get dsp().

Returns: DiSPATCH firmware version number on success, or -1 on failure.

Description: This function retrieves the DiSPATCH firmware revision number
from the DSP. The major and minor version numbers are returned
from the function as an integer value computed as follows:

(Major � 100) + Minor

For example, on a DSP running DiSPATCH version number 3.20,
the mmi get version() function would return 320.

Commands: VERSION

Rev 1.52, 2 May 1997 Vigra 161

DiSPATCH Command Functions Section 4.3

4.3.65 mmi show configuration

Prototype: int mmi show configuration (dsp t dsp);

Arguments:
dsp A DSP handle returned by mmi get dsp().

Returns: Zero on success, or -1 on failure.

Description: This function displays a long list of DiSPATCH firmware configu-
ration settings. These values are of little value to the application
programmer and are subject to change. At present, there is no pro-
vision to return any of the configuration values; the library prints
them to standard output directly.

Commands: CONFIGURATION

162 Vigra Rev 1.52, 2 May 1997

Section 4.3 DiSPATCH Command Functions

4.3.66 mmi test dsp dram

Prototype: int mmi test dsp dram (dsp t dsp, int verbose);

Arguments:
dsp A DSP handle returned by mmi get dsp().

verbose Request verbose test detail messages.

Returns: Zero on success, or -1 on RAM failure.

Description: This functions asks the DSP to perform a thorough test of all shared
DRAM. If any part of the DRAM does not test correctly, a failure is
reported and -1 is returned.

After the DSP has found DRAM to be operating correctly, a special
tag pattern is placed in memory to be verified by the host. This
ensures that both the DSP and host processor agree on the RAM
addressing.

When the tag pattern has been verified, the mmi test dsp dram()
function replaces all the Command IDs that were erased by the test
procedure and then returns a value of 0.

If the verbose argument is non-zero, then the library will print
status messages to stderr while the test is in progress. In the
event of failure, the routine will print the failed address. The
library will not print at anything if the verbose argument is zero.

Note that the RAM test is destructive, so any audio data or com-
mand arguments in DRAM will be destroyed during the test. This
can result in severe audio anomalies if playback is in progress when
the test is executed.

Commands: TEST DRAM

Rev 1.52, 2 May 1997 Vigra 163

DiSPATCH Command Functions Section 4.3

4.3.67 mmi start loopback

Prototype: int mmi start loopback (dsp t dsp);

Arguments:
dsp A DSP handle returned by mmi get dsp().

Returns: Zero on success, or -1 on failure.

Description: This function puts the DSP into internal loopback mode. In this
mode, all incoming digital audio is immediately copied to the output
channel. Normal play and record processing is suspended during
loopback.

A similar effect can be achieved by enabling the audio sidetone fea-
ture with mmi set sidetone(). This is the recommended method
for testing the analog audio path.

Commands: LOOPBACK

164 Vigra Rev 1.52, 2 May 1997

Section 4.3 DiSPATCH Command Functions

4.3.68 mmi end loopback

Prototype: int mmi end loopback (dsp t dsp);

Arguments:
dsp A DSP handle returned by mmi get dsp().

Returns: Zero on success, or -1 on failure.

Description: This function returns the DSP to the normal operating state from
loopback mode. Record and playback processing is resumed imme-
diately.

Commands: END LOOPBACK

Rev 1.52, 2 May 1997 Vigra 165

DiSPATCH Command Functions Section 4.3

4.3.69 mmi issue invalid cmd

Prototype: int mmi issue invalid cmd (dsp t dsp);

Arguments:
dsp A DSP handle returned by mmi get dsp().

Returns: Zero on success, or -1 on failure.

Description: This function intentionally executes a command with an invalid
Command ID. The DSP will not recognize the command, resulting
in an “Unrecognized Command Code”. This function is useful for
testing the error handling and recovery mechanisms in the library
and applications.

Commands: Unrecognized: $BADD

166 Vigra Rev 1.52, 2 May 1997

Section 4.3 DiSPATCH Command Functions

4.3.70 mmi dsp nop

Prototype: int mmi dsp nop (dsp t dsp);

Arguments:
dsp A DSP handle returned by mmi get dsp().

Returns: Zero on success, or -1 on failure.

Description: This function executes the special NOP DiSPATCH command,
which does absolutely nothing. It is primarily useful for measuring
the timing of the command and message protocol.

Commands: NOP

Rev 1.52, 2 May 1997 Vigra 167

DiSPATCH Command Functions Section 4.3

4.3.71 mmi query load

Prototype: int mmi query load (dsp t dsp, int *play, int *play max,

int *record, int *record max);

Arguments:
dsp A DSP handle returned by mmi get dsp().

*play The highest play load value since the last check.

*play max The maximum allowable play load for real-time
operation.

*record The highest record load value since the last
check.

*record max The maximum allowable record load for real-
time operation.

Returns: Zero on success, or -1 on failure.

Description: The DSP keeps a close count of how many cycles are consumed
during playback and recording operations. This function retrieves
the current load measurements from the DSP.

The play max and record max arguments are pointers to integer
variables. The mmi query load() function will place the maxi-
mum allowable load values into these two variables.

The play and record arguments are pointers to integer variables.
The mmi query load() function will place the highest recorded
load since the last reading into these variables.

If the play or record values exceed the play max or record max,
respectively, then the DSP failed to process audio in the required
time. When the DSP becomes overburdened, then the audio pro-
cessing will fail to run in real-time and anomalies may result.
DiSPATCH recovers automatically when the load returns to less
than 100%.

For details on the computation and interpretation of the DiSPATCH
load measurements, see the DiSPATCH Firmware User’s Manual
under the QUERY LOAD command.

Commands: QUERY LOAD

168 Vigra Rev 1.52, 2 May 1997

Section 4.3 DiSPATCH Command Functions

4.3.72 mmi analog test

Prototype: int mmi analog test (dsp t dsp, int speed, int *srate,

int *energy, int *impurity);

Arguments:
dsp A DSP handle returned by mmi get dsp().

speed The approximate clock speed of the DSP, in
megahertz.

*srate Measured sample rate approximation (in Hertz).

*energy Average RMS input signal energy.

*impurity Average signal impurity (harmonic distortion +
noise).

Returns: Zero on success, or -1 on failure.

Description: This function initiates an analog audio quality test and reports
the results. Before conducting the test, the signal output of the
DSP must be directly connected to the analog input of the same
DSP, and the gains must be set near unity.

The calling application must specify the clock speed of the DSP,
since the timing calculations take this into account. At the time of
this writing, the following speeds are recognized: 20, 27, and 33.

During the test, the DSP will synthesize a full-scale sinewave for
several seconds and measure the incoming signal for amplitude
and distortion. At the same time, the sample rate of the analog
converters is measured. The test results are stored in the vari-
ables pointed to by srate, energy, and impurity. Note that the
function makes no judgement of the quality of the signal, but only
passes the values to the calling application. A good test signal will
have a strong amplitude (high energy), and minimal distortion
(low impurity).

The measured amplitude (energy) is returned as a linear value
ranging from 0x0000 (no signal) to 0xFFFF (full signal). Since the
test signal is a sinewave, a full strength signal can approach 70%
of full RMS energy, approximately 0xB300.

The measured impurity is represented as a linear value ranging
from 0x0000 (perfect signal) to 0xFFFF (all noise). Since neither

Rev 1.52, 2 May 1997 Vigra 169

DiSPATCH Command Functions Section 4.3

the analog converters nor the band-pass test filter is perfect, the
signal will always contain some impurity.

A large impurity rating (greater than three percent of full scale)
may indicate that the analog signal is being distorted, perhaps by
excessive gain settings or incorrect connections. A small energy
rating (less than twenty percent of full scale) may indicate that the
loopback connection is not in place, or that the analog gains are set
to low.

The measured sample rate is only an approximation, and may de-
viate by several Hertz.

This self-test is only valid for monophonic operation, and will give
invalid results if stereo mode is enabled.

Commands: ANALOG TEST

170 Vigra Rev 1.52, 2 May 1997

Section 4.3 DiSPATCH Command Functions

4.3.73 mmi hammer dsp

Prototype: int mmi hammer dsp (dsp t dsp);

Arguments:
dsp A DSP handle returned by mmi get dsp().

Returns: Zero on success, or -1 on failure.

Description: This simply executes the HAMMER command, which causes the
DSP to loop for 162,024,000 clock cycles before returning. On a
27 MHz DSP, this function should take approximately six seconds
to execute. By measuring this delay, the host can verify the clock
speed of the DSP running DiSPATCH.

Commands: HAMMER

Rev 1.52, 2 May 1997 Vigra 171

DiSPATCH Command Functions Section 4.3

4.3.74 mmi eprom checksum

Prototype: int mmi eprom checksum (dsp t dsp);

Arguments:
dsp A DSP handle returned by mmi get dsp().

Returns: EPROM checksum on success, or -1 on failure.

Description: For MMI boards equipped with an EPROM, this function will
return a checksum of the data. Note that DiSPATCH does not
use the EPROM at all, but this function is retained for diagnostic
purposes.

The EPROM checksum is a 24-bit positive value, representing the
lowest 24 bits of the sum of all accessible bytes. A value of -1 is
returned on failure.

Commands: EPROM CHECKSUM

172 Vigra Rev 1.52, 2 May 1997

Section 4.3 DiSPATCH Command Functions

4.3.75 mmi show state

Prototype: int mmi show state (dsp t dsp);

Arguments:
dsp A DSP handle returned by mmi get dsp().

Returns: Zero on success, or -1 on failure.

Description: This function prints a list of internal DiSPATCH state flags to
stdout. These are used primarily during development and are
subject to change.

Commands: QUERY STATE

Rev 1.52, 2 May 1997 Vigra 173

DiSPATCH Command Functions Section 4.3

174 Vigra Rev 1.52, 2 May 1997

5. EXAMPLE APPLICATIONS

The DiSPATCH Software Package includes several example applications. These
programs may be adapted to fit customer needs, or parts may be extracted and
modified to accelerate application development.

Complete source code is included for all DiSPATCH example programs in the
“dispatch/apps” distribution directory. As with the programming library, Vigra
can not provide technical support for customer-modified versions of the example ap-
plications. Please study the code carefully before making any changes, and always
retain a copy of the original source code.

5.1 MMI-Test

The MMI-Test program is a powerful test and application prototyping tool
for DiSPATCH. MMI-Test provides a text-based command-line interface to all
DiSPATCH features and functions. The program can be used interactively or
directed by text script files.

The first part of this section explains how one might use MMI-Test, and the sec-
ond part provides a more detailed reference for each command supported by the
program.

Under most operating systems, the MMI-Test program uses the GNU Readline
command-line interface, providing convenient and programmable editing features
that closely resemble that of the Bash shell and GNU Emacs editor.

5.1.1 Running MMI-Test

The MMI-Test program is executed by simply running “mmi-test”. The program
uses no command-line arguments. An MMI audio processing board need not be
installed to run the program, but most commands will not run until a board has
been installed and selected.

175

MMI-Test Section 5.1

Note that under OS-9, filenames are not allowed to contain the dash character
(‘-’), so the program is called “mmi test” on this platform, instead of “mmi-test”.

5.1.2 The Command Line

The command line processor is provided by GNU’s Readline and History libraries,
and includes a number of features such as macros, intelligent terminal support,
automatic completion, undo, keymap configuration, cut and paste, and command
history. For information on how to fully use this powerful command line interface,
please read the GNU Readline Library and GNU History Library documentation
by Brian Fox. Full source code to these libraries is provided with MMI-Test.

In brief, command lines may be edited by use of standard keys such as delete,
backspace, and cursor motion. A complete history of executed commands is kept
and automatically saved between sessions. The keystrokes Control - P and

Control - N will move backwards and forwards through previously-entered com-
mands.

The screen can be cleared and redrawn at any time by hitting Control - L . To

cancel a command line, press Control - C .

To exit the MMI-Test program, enter the quit command, or press Control - D
from the command line.

Automatic Completion

Command words and filenames may be automatically completed by pressing the
TAB key. This will finish the start of a command word, or beep if the command is

not uniquely specified. A second press of the TAB key will show all the possible
completions for the partial command or filename. Completion makes it easy to
quickly enter commands, even long commands, because the user need only type
the first part, and then press TAB .

176 Vigra Rev 1.52, 2 May 1997

Section 5.1 MMI-Test

5.1.3 Selecting and Initializing an MMI Board

Before executing any firmware commands, the user must select an MMI board
to act upon. This is accomplished by use of the open board command. This
command requires a Vigra MMI model name and device handle as parameters.
These specifies which board you wish to access, and what MMI model it is. For
example, this command would open the first MMI-4210 on the system:

MMI Test: open_board MMI-4210 /dev/mmidsp0

The model name must be one of the recognized names shown on page 67. Case is
ignored.

The device name is determined by the operating system configuration. The first
installed MMI board is conventionally named “/dev/mmidsp0”, and the second is
named “/dev/mmidsp1”, etc.

The open board command will map the VME board into virtual space, if necessary,
and then set up the status information in the interface routines. On-board DRAM
will be initialized for firmware operation. An error will be returned if the board
could not be mapped or accessed. This usually means that the VME address
jumpers on the board are not configured correctly, or the model was specified
incorrectly.

After mapping and initializing the board, most commands will become accessible
to the user. The command-line prompt will change from “MMI Test:” to “MMI-4210
#1 [DSP A]:” or something similar. This prompt indicates the currently selected
MMI model and DSP channel. It is updated when a different board or DSP is
selected. All MMI-Test commands are directed to the selected board and DSP, as
shown in the prompt.

More than one MMI board can be open at the same time. Each board will be
assigned a different board number, starting from number one. The board number
of the active board is shown in the prompt. The user can switch between open
boards by calling board select with the board number.

Selecting the DSP

Some MMI boards have more than one Digital Signal Processor (DSP). Each of
the DSPs is totally independent and can be manipulated by itself. The MMI-Test
program acts on one DSP at a time, referred to as the “selected DSP”.

The user can select a different DSP at any time. Any unselected DSPs continue

Rev 1.52, 2 May 1997 Vigra 177

MMI-Test Section 5.1

DiSPATCH operation, but MMI-Test commands are directed only to the selected
DSP. The user selects a DSP by using the dsp select command. For example:

MMI-210-1 #1 [DSP A]: dsp_select b

MMI-210-1 #1 [DSP B]:

This command selects the second DSP on the board. The next prompt shows the
new active DSP.

Booting the firmware

Before any DiSPATCH commands can be executed, the user must initialize the
DSP and upload the DiSPATCH firmware. This can be easily accomplished by the
use of the boot command, which performs all necessary DiSPATCH initialization.

5.1.4 An Example

An example session of MMI-Test is described below. Consult the MMI-Test com-
mand reference section for details on each command.

First, the user runs the test program from the Unix prompt:

hobbes% mmi-test

Then, the user must select a board model and device name:

MMI Test: open_board MMI-4211 /dev/mmidsp0

This specifies that an MMI-4211 has been configured with the file name
“/dev/mmidsp0”. The program will attempt to map and initialize the board,
reporting any errors that are encountered. If no errors are detected, the board will
be selected and the prompt will change.

MMI-4211 #1 [DSP A]: dsp_select B

This selects the second DSP for use, again reflected in the prompt.

MMI-4211 #1 [DSP B]: boot

178 Vigra Rev 1.52, 2 May 1997

Section 5.1 MMI-Test

This resets and boots the default DiSPATCH firmware binary that is part of the
library.

MMI-4211 #1 [DSP B]: version

Firmware version 3.31

MMI-4211 #1 [DSP B]: test_dsp_dram

Running firmware DRAM test... Ok.

Running residue check... Ok.

DSP DRAM test passed.

MMI-4211 #1 [DSP B]: test_host_dram

Testing Host 32-bit DRAM access... done.

Testing Host 16-bit DRAM access... done.

Testing Host 8-bit DRAM access... done.

mmi: Host DRAM test passed.

These command check the firmware version number, and then do an exhaustive
test of DSP and Host access to the on-board Dual-Port RAM.

MMI-4211 #1 [DSP B]: srate 8000

MMI-4211 #1 [DSP B]: input_gain 100

MMI-4211 #1 [DSP B]: speed_change 150

MMI-4211 #1 [DSP B]: led on

MMI-4211 #1 [DSP B]: quit

These commands set some audio parameters, turn on the front-panel LED, and
then exit the MMI-Test program.

5.1.5 X-Windows Sliders

Several commands accept the keyword “slider” in place of the normal numeric
argument. If MMI-Test is running under the X-Windows display system, this will
cause a ScrollBar window to appear on the screen. This slider will then dynamically
control the named parameter. Changes made to the slider position will immediately

Rev 1.52, 2 May 1997 Vigra 179

MMI-Test Section 5.1

change the associated parameter, allowing for rapid selection and adjustment of
the various audio controls.

For this function to work, the MMI-Test program must be able to call the
external program “slideout”, supplied by Vigra in the distribution directory
“dispatch/apps/slideout”. If the user can not execute this program, or X-
Windows is not running, the slider option will have no effect.

5.1.6 Command Reference

This section describes each of the available commands and their parameters. In-
dividual parameter values are represented by bracketed names, <like this>. Pa-
rameters that are optional are enclosed in square brackets, <[like this]>. All other
parameters are required.

?
Synonym for help.

abort all play
Abort all pending play commands on this DSP.

abort monitor
Abort all pending monitor commands on this DSP.

abort play
Synonym for abort all play.

abort record
Abort all pending record commands on this DSP.

abort track <track>
Abort pending play commands for only one playback track.

adaptive fir <gain | Slider> <taps>
Set the adaptive FIR filter parameters. Experimental.

analog test <DSP Clock (MHz)>
Perform a self-test of the analog audio subsection. Requires that a loopback
cable be installed from the channel output to channel output.

audio loop
Record and immediately play back buffers continuously. This creates a digital
delay based on the current buffer size.

180 Vigra Rev 1.52, 2 May 1997

Section 5.1 MMI-Test

bias
Synonym for input bias.

blinks [<count>]
Execute LED on/off commands as fast as possible. A count of –1 will blink
the LED continuously.

board select <board number>
Select an MMI board by number. The board must have previously been
opened with open board.

boot [<firmware filename>]
Boot the DiSPATCH firmware. If the optional firmware filename is provided,
then the P, X, and Y binary images will be obtained from external files instead
of the library default images.

brief analog test <DSP Clock (MHz)>
Performs tha same test as analog test, but prints the results in a more
compact format.

buffer size <words | ?>
Set the MMI-Test audio buffer size. This buffer size is implicitly used by all
double-buffered commands, like play file and record file.

configuration
Show the DiSPATCH firmware configuration values.

count buffers
Print the number of pending record, play, and monitor buffers.

counter [<toggle>]
Enable or disable the playback sample counter.

debug
Special volatile debug function.

diag boot
Verbose diagnostic version of boot. This command lists each of the steps in
the boot sequence as they are executed.

discard
Discard all pending responses from the library’s internal list.

display tone
Synonym for tone display.

Rev 1.52, 2 May 1997 Vigra 181

MMI-Test Section 5.1

do <filename>
Execute commands from a script file instead of the interactive command line.
Control will return to the command line when the script finishes

dribble <filename or - >
This logs all DiSPATCH DSP messages to a file. The special filename of “-”
will print them to the terminal running MMI-Test.

dsp select <new dsp channel>
Select a DSP channel as the active channel. MMI-Test will direct all new
commands to the active channel. The new dsp channel may be specified by
letter (starting from “A”), or by number (starting from 0).

echo [<string>]
This prints its argument. This is useful for printing messages from script
files.

eprom checksum
Compute and display the EPROM checksum for this DSP.

equalizer [<toggle>]
Enable, disable, and adjust the 10-band spectrum EQ. The <toggle> argument
enables or disables the equalizer. The first time the slider is enabled, the level-
adjust sliders will appear. the levels. This command requires that graphical
sliders be available, since 10 numeric arguments would get cumbersome.

erase dram
Zero the entire data buffer region of DRAM.

exit
Synonym for quit.

fetch error
Retrieve the current error code from the DSP.

halt
Halt the DSP. This puts the DSP into a hardware reset state, which requires
that DiSPATCH be rebooted later on this DSP.

hammer
Execute a large fixed loop on the DSP. This can be useful for DSP execution
speed measurements.

182 Vigra Rev 1.52, 2 May 1997

Section 5.1 MMI-Test

help [<command>]
Display help text. If no <command> is specified, every available command
and a brief description of each will be displayed. If a specific command is
specified, then the description and usage for that command will be displayed.

history [<how many>]
Show MMI-Test command history. This is used to review previously-used
commands. If a count is not specified, all recorded command lines will be
displayed.

input bias [<buffer count>]
Measure the DC input bias for this channel.

input gain <gain value | Slider>
Set the analog input amplifier gain on models that are equipped with appro-
priate hardware.

input peak
Measure and print the peak input signal level.

input select
Synonym for select input.

invalid cmd
Issue an intentionally invalid DSP command for testing the error recovery
mechanisms.

led [<toggle>] [<which led>]
Set the front-panel LED state. On boards with more than one LED, the
<which led> argument specifies which is to be set. The first available LED is
number zero, the default.

listen
Wait indefinately for DSP messages. This is most useful when the dribble file
is enabled and a response is expected. MMI-Test must be interrupted to end
this command.

list [<filespec>]
List files in the specified directory. This is similar to the common “ls -l”
command under Unix.

load dspmem <X|Y|P> <DSP addr> <file>
Upload a binary image from a system file to DSP private P, X, or Y memory.

Rev 1.52, 2 May 1997 Vigra 183

MMI-Test Section 5.1

load wave <filename> <table code>
Load a waveform file into a DSP wavetable. The file must be exactly 256
samples long (512 bytes).

loopback [<toggle>]
Enable or disable the DSP direct digital audio loopback.

ls
Synonym for list.

measurements [<toggle>]
Enable or disable input signal measurements (peak and bias).

mail [<toggle>]
Enable or disable DiSPATCH debugging mail messages.

monitor format <format>
Set the audio data format for monitor data.

monitor pos
Print the current monitor buffer position.

monitor [<offset>] [<count>]
Start playback monitoring to copy processed playback audio to DRAM.

nops [<how many>]
This repeatedly executes the NOP command as fast as possible. The default
cycle count is 10,000. This is useful for timing the communication mechanism
and overhead.

open board <model> <driver basename>
Open and initialize an MMI board. The model name must be a recognized
Vigra MMI model name string, such as “MMI-4211”. The driver basename
specifies the configured system name for that board, such as “/dev/mmidsp0”.

output gain <gain value | Slider>
Set the analog output amplifier gain, on boards equipped with appropriate
hardware.

pause play
Pause all playback operation.

pause record
Pause all recording.

184 Vigra Rev 1.52, 2 May 1997

Section 5.1 MMI-Test

pause [<seconds>]
Wait for the specified number of seconds.

play file <filename> [<track>]
Play an audio file using the specified playback track.

play filter <[toggle]> <coefficient file>
Playback FIR filter control. The first option enables or disables the FIR filter.
If a coefficient file is specified, it will be loaded into the FIR filter table on the
DSP.

play format <format> [<track>]
Set audio data format for playback on the specified track.

play gain <digital gain | Slider> [<track | Master>]
Set the digital playback gain (in percent) for one track or specify “Master” to
set the master playback gain.

play pos [<track>]
Print the current play position.

play
Synonym for play file.

probe
Verify that the DiSPATCH firmware is initialized and running.

process <input file> <output file>
Play the input file while using monitor to store the processed audio into the
output file.

query load
Read, display, and reset the worst-case bandwidth utilization measurement.
A load greater than 100% indicates that the DSP may have failed to meet
demands in real-time.

quiet <toggle>
Toggle verbose mode. When verbose mode is enabled, all status messages will
be supressed.

quit
Exit the MMI-Test program.

Rev 1.52, 2 May 1997 Vigra 185

MMI-Test Section 5.1

ram copy <source> <dest> [<count>] [<src start>] [<dest start>]
Copy data from one open MMI board to another. Both boards must have
been previously opened with open board and assigned a board number. The
<source> and <dest> arguments are specified as board numbers.

ram load <filename> [<offset>] [<count>]
Load data into DRAM from a file.

ram monitor
Synonym for monitor.

ram play [<offset>] [<count>] [<track>]
Play data already present in DRAM. This command returns immediately
after initiating the playback.

ram record [<offset>] [<count>]
Record audio to a buffer in DRAM. This command returns immediately after
starting the recording.

ram save <filename> [<offset>] [<count>]
Copy the contents of a DRAM region into a file.

ram subbuf play <buf count> <buf spacing> [<start>] [<size>] [<track>]
Play DRAM region using subbufers.

ram transform <src fmt> <dest fmt> <start> <size> [<dest>] [<subbufs>]
[<subbuf spacing>]
Convert the audio format of a region of data. The audio source data region
and destination region should not overlap. This command will not return
until the format conversion is complete.

record file <filename> [<length>]
Record incoming audio to a file using double-buffering. The <length> is spec-
ified in seconds.

record filter <[toggle]> <coefficient file>
Recording FIR filter control. The first option enables or disables the recording
FIR filter. If a coefficient file is specified, it will be loaded into the FIR filter
table on the DSP.

record format <format>
Set the audio data format for recording.

186 Vigra Rev 1.52, 2 May 1997

Section 5.1 MMI-Test

record gain <digital gain | Slider>
Set the digital recording gain (in percent).

record pos
Print the current record buffer position.

record
Synonym for record file.

repeat <command>
Repeat an MMI-Test command indefinately, or until MMI-Test is interrupted.

reset counter
Reset the playback sample counter value to zero.

resume play
Resume paused playback.

resume record
Resume paused recording.

reverb <gain | Slider> <delay>
Set the digital reverb parameters or request slider controls.

route <A, B, C, D>
Select audio signal output routing (using analog mixer). The audio output
from the current DSP will be directed to all of the specified output ports.

select input <Microphone | Line>
Select the audio input source. Abbreviations are accepted.

set pnm <P> <N> <M>
Set programmable frequency synthesizer P, N, and M values manually.

show state
Show internal DiSPATCH state flags.

sidetone <gain value | Slider>
Set the sidetone gain level, in percent.

signal detect <detector> <voice | Slider> <energy> <up> <down>
Configure the parameters for a signal detector.

sparcplay <filename>
Play a �-Law audio file directly to “/dev/audio”. This only applies to Sun
Sparcstations.

Rev 1.52, 2 May 1997 Vigra 187

MMI-Test Section 5.1

speed change <Slider | 50 - 200>
Set speed change percentage.

srate <Slider | play freq> [<rec freq>]
Set the sampling rate for playback and recording.

stereo mode <[toggle]>
Enable or disable stereo operation.

swatch <detector>
Start a “swatch” window to watch the status of a signal detector. This
requires that the “swatch” program be installed and executable.

test dsp dram
Test DSP access to DRAM.

test host dram
Test host access to DRAM.

test tone [<freq>] [<length>] [<amplitude>]
Generate a test tone.

time <command>
Time the execution of an MMI-Test command.

tone am enable [<toggle>]
Enable or disable amplitude modulation.

tone am frequency <Hertz>
Set AM frequency.

tone am table <table> [<table start>]
Set wavetable for AM oscillator.

tone attack time <seconds>
Set envelope attack time.

tone count <count | -1>
Set the repeat count of the tone. Use –1 for endless repetition.

tone display
Display the current tone parameters.

tone envelope enable [<toggle>]
Enable or disable envelope.

188 Vigra Rev 1.52, 2 May 1997

Section 5.2 MMI-Test

tone fm delta <delta freq | Sl>
Set FM frequency delta (depth).

tone fm enable [<toggle>]
Enable or disable frequency modulation.

tone fm frequency <mod freq | Sl>
Set frequency modulation rate.

tone fm table <FM Table> [<table start>]
Set wavetable for FM oscillator.

tone frequency <frequency>
Set the main (carrier) tone frequency.

tone release time <seconds>
Set envelope release time.

tone sustain time <seconds>
Set the sustain length of a tone.

tone times <attack> <sustain> <release>
Set all three envelope times.

tone track <track>
Set the output playback track for tone generation.

tone wavetable <table code>
Set the wavetable for the main oscillator.

transform file <src fmt> <dest fmt> <src filename> <dest filename>
Convert the data format of an audio file.

upload p <binary P image filename>
Boot a binary program image from a file, but do not initialize X and Y memory.

version
Display DiSPATCH firmware version number.

wait [<prompt>]
Wait for the user to hit Enter.

watch counter
Show the running play counter until interrupted.

waveshape [<table>]
Select the waveshaping table, or –1 to disable waveshaping.

Rev 1.52, 2 May 1997 Vigra 189

ToneShop and SampleTones Section 5.4

5.2 ToneShop and SampleTones

ToneShop is an interactive tone editor for testing and prototyping tone synthe-
sis parameters. This program is documented in detail in the DiSPATCH Tone
Generation Manual. The SampleTones program also provides several examples of
common models for tone synthesis.

5.3 simp play.c and simp record.c

These two files provide simple examples of playback and recording using the
DiSPATCH library. Many features have been left out of these programs for maxi-
mum simplicity.

The command-line usage for simp play is as follows:

simp_play 32000 myaudio.in

The first argument is the sample rate to use for playback. The second argument
is the name of the file to supply the audio data for playback. If the filename
argument is omitted or it is “-”, then the audio data will be read from “stdin”. If
no arguments are provided, the sample rate will be 32000 Hz.

The command-line usage for simp record is as follows:

simp_record 32000 30 myaudio.out

The first argument is the sample rate to use for recording. The second argument is
the length of the recording in seconds. The last argument is the name of the output
file for the recorded data, or “-” to write it to “stdout”. The default arguments are
“32000”, “60”, and “-”, respectively.

The code for both the simp play and simp record programs were written to pro-
vide clear examples to the reader. The MMI model and device name are hard-coded
into the program for simplicity, but can be easily edited for a different configuration.
See the comments in the code for customization details.

5.4 Play

While simp play is a simple example of playback, the play program provides
added flexibility and access to more of the advanced features of DiSPATCH.

190 Vigra Rev 1.52, 2 May 1997

Section 5.4 Play

5.4.1 Unix Usage

The usage of the play program is different under VxWorks and Unix systems. On
Unix-derived systems, the options are passed via the command line when executing
the play program. The input file for play is also specified on the command line. An
example invocation is shown below.

% play -model MMI-4211 -dev /dev/mmidsp0 -chan 0 -srate 44100 myaudio.pcm16

For details on the available options for the play program, execute “play -help”
to display the option list. Version 1.12 of the play program displays the following
information:

% play -help

Usage: play [options] input_file

-help Display this usage information.

-model <name> Specify the MMI model (i.e. MMI-4211).

-device <name> Specify the device driver (i.e. /dev/mmidsp0).

-channel <chan> Select the DSP channel (0, 1, 2, or 3).

-srate <Hz> The sample rate for playback (in Hertz).

-frequency <Hz> Same as -srate.

-stereo Enable stereo mode (default is mono).

-gain <level> Set the analog output gain level (0 - 255).

-format <type> Specify the audio data format type (i.e. pcm16).

-quiet Do not print any status information.

All command-line options can be unambiguously abbreviated. Any unspecified
options will use the following default values:

Option Default
model "MMI-4211"
device "/dev/mmidsp0"
channel 0
srate 44100
stereo no
gain 143
format "PCM16"
verbose yes
filename “-”

Rev 1.52, 2 May 1997 Vigra 191

Record Section 5.5

5.4.2 VxWorks Usage

The VxWorks command shell does not allow more than 10 command arguments,
so a different option interface is provided. Since the variables used by play are
directly accessible from the command shell, all the options can be changed by
simply assigning new values to these global variables. After the control variables
have been set as needed, the function play() can be called from the shell (or
another function). The function play usage() will display the available option
variables and their current values. An example display from play usage() is
shown below.

-> play_usage

The MMI DiSPATCH play() routine uses these global variables:

char *play_model - The MMI model name ("MMI-4211").

char *play_device - The device driver name ("/dev/mmidsp0").

char *play_format - Specify the audio data format type ("pcm16").

char *play_file - The input filename ("-").

int play_channel - The DSP channel to use (0).

int play_srate - The sample rate (Hz) for playback (44100).

int play_stereo - 1 = Stereo mode enabled, 0 = mono (0).

int play_gain - The analog output gain level (143).

int play_verbose - 1 = Print status information, 0 = quiet (1).

To change the gain setting, for example, simply set the new value from the command
line before calling play():

-> play_gain = 50

_play_gain = 0x3b2654: value = 50 = 0x32 = '2'

->

5.5 Record

The record program is similar in operation to the play program. Instead of
playing audio from a system file, it records incoming audio to a new file. Any
existing file of the same name as the output file will be replaced. The Unix options
for record are as follows:

% record -help

192 Vigra Rev 1.52, 2 May 1997

Section 5.5 Record

Usage: record [options] output_file

-help Display this usage information.

-model <name> Specify the MMI model (i.e. MMI-4211).

-device <name> Specify the device driver (i.e. /dev/mmidsp0).

-channel <chan> Select the DSP channel (0, 1, 2, or 3).

-srate <Hz> The sample rate for recording (in Hertz).

-frequency <Hz> Same as -srate.

-stereo Enable stereo mode (default is mono).

-gain <level> Set the analog output gain level (0 - 255).

-format <type> Specify the audio data format type (i.e. pcm16).

-quiet Do not print any status information.

-source <name> Input source ("line" or "mic").

-length <secs> Recording length in seconds.

Under VxWorks, the record options are controlled via global control variables, as
with play. The control variables are:

-> record_usage

The MMI DiSPATCH record() routine uses these global variables:

char *record_model - The MMI model name ("MMI-4211").

char *record_device - The device driver name ("/dev/mmidsp0").

char *record_format - Specify the audio data format type ("pcm16").

char *record_file - The output filename ("-").

char *record_source - Audio input source ("line").

int record_channel - The DSP channel to use (0).

int record_srate - The sample rate (Hz) for recording (44100).

int record_stereo - 1 = Stereo mode enabled, 0 = mono (0).

int record_gain - The analog output gain level (255).

int record_verbose - 1 = Print status information, 0 = quiet (1).

int record_length - Recording length in seconds (300).

Rev 1.52, 2 May 1997 Vigra 193

INDEX

dsp t type, 65, 71, 73
mmi board t type, 65
mmi complete, 66
play example program, 190
record example program, 192
simp play, 190
simp record, 190
select() operation, 86
“dispatch.h”, 65
“firm defs.h”, 65

Aborting
monitoring, 121
playback, 118, 119
recording, 120

Address of DRAM start, 72
Address, physical, 64
Allocating memory, 81
Analog input gain, 123
Analog input select, 141
Analog output gain, 124
Analog signal routing, 125
Analog test, 169
ANSI C provisions, 65
Audio data formats, 93
Audio data packing, 94
Audio diagnostics, 169
Audio loopback, 164

Base address of DRAM, 72
Binary firmware images, 4
Board address, 64
Board deallocation, 69
Board model name, 73

Board names, 67
Board structures, 65
Booting DiSPATCH, 74
Buffer playback, 102
Buffer position, 115

C header files, 65
C programming library, 63
Callbacks, 87, 88
Checking for responses, 80
Checksum, EPROM, 172
Clipping LED, 132
Closing boards, 69
Command codes, 89
Command line, 176
Commands, executing, 95
Completion tokens, 66, 83–85, 102
Configuration, firmware, 162
Control functions, 67
Counting buffers, 131
Customer modifications, 65

Data format
monitoring, 110
playback, 108
recording, 109

Data formats, 93
Deallocating boards, 69
Destructive DRAM test, 82
Device driver, 63
Device filenames, 64
Diagnostic DiSPATCH boot, 76
Digital loopback, 164
Discarding messages, 92

194

Section 5.5 INDEX

DiSPATCH Programming Library, 63
DiSPATCH Software Package, 1
Distortion test, 169
DRAM base address, 72
DRAM test

DSP, 163
host, 82

DRAM tone generation, 152
Dribble file, 90, 91
DSP bandwidth and load, 168
DSP clock speed, 171
DSP file descriptor, 86
DSP filenames, 64
DSP Handle, 71
DSP memory, loading, 96, 97
DSP reset, 79

Enabling mail messages, 158
EPROM checksum, 172
Equalizer, 139
Error codes, 157
Example applications, 175
Executing commands, 95

Faders, 179
Feedback, 128
Fetching error codes, 157
File descriptor, 86
File playback, 106
File recording, 107
Filenames for DSPs, 64
FIR filter, 144–147
Firmware configuration, 162
Firmware images, 4
Firmware initialization, 74
Firmware probing, 160
Firmware state, 173
Firmware version, 161
Flushing responses, 92
Format

monitoring, 110
playback, 108
recording, 109

Format codes, 93
Format conversion, 129, 130
Format names, 93
Format sizes, 94
Frequency equalizer, 139
Front-panel LED, 132
Front-panel LEDs, 122

Gain level
playback, 111
recording, 112

Generating tones to DRAM, 152
GNU Readline, 176
Graphical sliders, 179

Hardware reset, 79
Header files, 65
Host-support packages, 5
HP-RT installation, 37
HP-UX installation, 42, 49

Impurity measurement, 169
Include files, 65
Initialization, 67

DiSPATCH firmware, 74
VxWorks, 70

Initializing command codes, 89
Initializing library state, 70
Input gain, 123
Input selection, 141
Interactive test, 175
Interrupts, 3
Interrupts vs. polled, 66, 85
Invalid command, 166
IRIX 5.2 installation, 28
IRIX installation, 23
Issue invalid command, 166

Rev 1.52, 2 May 1997 Vigra 195

INDEX Section 5.5

LED, 132
LED indicators, 122
Library, 63
Library state, resetting, 70
Load check, 168
Loading DSP memory, 96, 97
Loopback mode, 164, 165

Mail messages, 158, 159
Memory allocation, 81
Memory test, 82, 163
Message list, 66, 85, 92
Messages, printing, 90
Mixer, 125
MMI board address, 64
MMI model names, 67
MMI structures, 65
MMI-Test, 175
MMI-Test, example, 178
mmi abort all play, 119
mmi abort monitor, 121
mmi abort record, 120
mmi abort track, 118
mmi analog test, 169
mmi boot default, 75
mmi boot file, 78
mmi check response, 85
mmi clip led, 132
mmi close, 69
mmi complete, 84
mmi count buffers, 131
mmi delete callback, 88
mmi diag boot, 76
mmi disable mail, 159
mmi disable measurements, 134
mmi discard resp, 92
mmi dsp command, 95
mmi dsp nop, 167
mmi enable mail, 158
mmi enable measurements, 133

mmi end counter, 99
mmi end dribble, 91
mmi end loopback, 165
mmi end tone, 154
mmi eprom checksum, 172
mmi fetch error, 157
mmi filter play, 144
mmi filter record, 145
mmi get dsp, 71
mmi get dsp filedes, 86
mmi get model, 73
mmi get ram base, 72
mmi get version, 161
mmi halt dsp, 79
mmi hammer dsp, 171
mmi init cmd codes, 89
mmi input bias, 136
mmi input peak, 135
mmi issue invalid cmd, 166
mmi led ctrl, 122
mmi lib initialize, 70
mmi load dspmem, 96
mmi load dspmem file, 97
mmi load play fir, 146
mmi load record fir, 147
mmi load table, 155
mmi malloc, 81
mmi monitor buf, 105
mmi monitor position, 117
mmi open, 67
mmi parse format, 93
mmi play buf, 102
mmi play ctrl, 113
mmi play file, 106
mmi play position, 115
mmi play subbuffers, 103
mmi play tone, 151
mmi poll messages, 80
mmi probe firmware, 160
mmi query load, 168

196 Vigra Rev 1.52, 2 May 1997

Section 5.5 INDEX

mmi query stereo, 143
mmi ramtone, 152
mmi read counter, 101
mmi record buf, 104
mmi record ctrl, 114
mmi record file, 107
mmi record position, 116
mmi register callback, 87
mmi register counter, 98
mmi request srate, 149
mmi reset counter, 100
mmi samples per word, 94
mmi select input, 141
mmi set equalizer, 139
mmi set input gain, 123
mmi set mixer, 125
mmi set monitor format, 110
mmi set output gain, 124
mmi set play format, 108
mmi set play gain, 111
mmi set pnm, 150
mmi set record format, 109
mmi set record gain, 112
mmi set resample, 127
mmi set reverb, 140
mmi set sidetone, 128
mmi set speed change, 126
mmi set srate, 148
mmi show configuration, 162
mmi show state, 173
mmi signal detect, 137
mmi start dribble, 90
mmi start firmware, 74
mmi start loopback, 164
mmi stereo mode, 142
mmi test dsp dram, 163
mmi test host dram, 82
mmi transform buffer, 129
mmi transform file, 130
mmi wait response, 83

mmi waveshape, 156
Model name string, 73
Model names, 67
Modified programs, 65
Monitor Position, 117
Monitoring

aborting, 121
Monitoring playback, 105
Monophonic mode, 142
Motorola System V/88 installation, 55
Multi-thread access, 64
Multirate filter, 127

Names of MMI models, 67
NOP, 167

Object files (VxWorks), 20
Opening an MMI board, 67
OS-9 installation, 33
Out-of-band data, 158
Output gain, 124
Output ports, 125

Parsing format names, 93
Pausing playback, 113
Pausing recording, 114
PFS control, 150
Physical board address, 64
Playback

aborting, 118, 119
filter, 144, 146
gain, 111, 124
load, 168
monitoring, 105
pausing, 113
position, 115

Playback counter
reading, 101
registering, 98
resetting, 100
terminating, 99

Rev 1.52, 2 May 1997 Vigra 197

INDEX Section 5.5

Playing a file, 106
Playing DRAM buffers, 102
Playing sub-buffers, 103
PNM values, 150
Polled operation, 66, 80, 85
Private DSP memory, 96, 97
Probing firmware, 160
Programming library, 63

RAM base address, 72
Re-entrant library code, 63
Reading a counter, 101
Readline, 176
README file, 1
Record Level, 132
Recording

aborting, 120
buffers, 104
filter, 145, 147
gain, 112, 123
input source, 141
load, 168
pausing, 114
position, 116
to a file, 107

Registering a counter, 98
Registering callbacks, 87, 88
Resampling, 127
Resetting a counter, 100
Resetting DiSPATCH, 79
Resetting library state, 70
Responses, polling, 66
Restoring command codes, 89
Reverb, 140
Router, 125

Sample rate, 127
Sample rate, setting, 148
Sample-interleaving, 142
Samples per word, 94

SampleTones, 190
Sampling frequency, 148, 149
Self-test, 169
Setting the sample rate, 148
SGI installation, 23, 28
Shared access, 64
Show state, 173
Sidetone, 128
Signal detection, 137
Signal impurity, 169
Signal Mixer, 125
Signal quality measurement, 169
Silence detection, 137
Simultaneous use, 64
Slider support, 179
Software reset, 79
Solaris installation, 13
Source code, 65, 175
Source select, 141
Spectrum equalizer, 139
Speed change, 126
Starting DiSPATCH, 74
Stereo mode, 142, 143
Sub-buffer playback, 103
SunOS installation, 6
Synthesis of tones, 151
System load, 168
System V/88 installation, 55

Technical support, 65
Terminating a counter, 99
Testing DRAM

DSP, 163
host, 82

Time compress/expand, 126
Tokens

completion, 66, 83–85
waiting for, 66, 83–85

Tone Generation, 154
Tone generation, 151, 152

198 Vigra Rev 1.52, 2 May 1997

Section 5.5 INDEX

ToneShop, 190
Tracing messages, 90
Transform buffer, 129
Transform file, 130
Types, DiSPATCH, 65

Unclaimed responses, 92
Unix System V/88 installation, 55

Version number, 161
Voice detection, 137
VxWorks initialization, 70
VxWorks installation, 18
VxWorks object files, 20

Waveform synthesis, 151
Waveshaping, 156
Wavetable, loading, 155
Wind Rivers VxWorks installation, 18

X-Windows sliders, 179

Rev 1.52, 2 May 1997 Vigra 199

