comparison ym_common.c @ 2558:3f58fec775df

Initial work on YMF262 (aka OPL3) emulation
author Michael Pavone <pavone@retrodev.com>
date Sun, 19 Jan 2025 00:31:16 -0800
parents
children eb588f22ec76
comparison
equal deleted inserted replaced
2557:75dd7536c467 2558:3f58fec775df
1 #include <math.h>
2 #include "ym_common.h"
3
4 #ifdef __ANDROID__
5 #define log2(x) (log(x)/log(2))
6 #endif
7
8 //According to Nemesis, real hardware only uses a 256 entry quarter sine table; however,
9 //memory is cheap so using a half sine table will probably save some cycles
10 //a full sine table would be nice, but negative numbers don't get along with log2
11 #define SINE_TABLE_SIZE 512
12 static uint16_t sine_table[SINE_TABLE_SIZE];
13 //Similar deal here with the power table for log -> linear conversion
14 //According to Nemesis, real hardware only uses a 256 entry table for the fractional part
15 //and uses the whole part as a shift amount.
16 #define POW_TABLE_SIZE (1 << 13)
17 static uint16_t pow_table[POW_TABLE_SIZE];
18
19 static uint16_t rate_table_base[] = {
20 //main portion
21 0,1,0,1,0,1,0,1,
22 0,1,0,1,1,1,0,1,
23 0,1,1,1,0,1,1,1,
24 0,1,1,1,1,1,1,1,
25 //top end
26 1,1,1,1,1,1,1,1,
27 1,1,1,2,1,1,1,2,
28 1,2,1,2,1,2,1,2,
29 1,2,2,2,1,2,2,2,
30 };
31
32 uint16_t rate_table[64*8];
33
34 static uint8_t lfo_pm_base[][8] = {
35 {0, 0, 0, 0, 0, 0, 0, 0},
36 {0, 0, 0, 0, 4, 4, 4, 4},
37 {0, 0, 0, 4, 4, 4, 8, 8},
38 {0, 0, 4, 4, 8, 8, 0xc, 0xc},
39 {0, 0, 4, 8, 8, 8, 0xc,0x10},
40 {0, 0, 8, 0xc,0x10,0x10,0x14,0x18},
41 {0, 0,0x10,0x18,0x20,0x20,0x28,0x30},
42 {0, 0,0x20,0x30,0x40,0x40,0x50,0x60}
43 };
44 int16_t lfo_pm_table[128 * 32 * 8];
45
46 static uint16_t round_fixed_point(double value, int dec_bits)
47 {
48 return value * (1 << dec_bits) + 0.5;
49 }
50
51 void ym_init_tables(void)
52 {
53 static uint8_t did_tbl_init;
54 if (did_tbl_init) {
55 return;
56 }
57 did_tbl_init = 1;
58 //populate sine table
59 for (int32_t i = 0; i < 512; i++) {
60 double sine = sin( ((double)(i*2+1) / SINE_TABLE_SIZE) * M_PI_2 );
61
62 //table stores 4.8 fixed pointed representation of the base 2 log
63 sine_table[i] = round_fixed_point(-log2(sine), 8);
64 }
65 //populate power table
66 for (int32_t i = 0; i < POW_TABLE_SIZE; i++) {
67 double linear = pow(2, -((double)((i & 0xFF)+1) / 256.0));
68 int32_t tmp = round_fixed_point(linear, 11);
69 int32_t shift = (i >> 8) - 2;
70 if (shift < 0) {
71 tmp <<= 0-shift;
72 } else {
73 tmp >>= shift;
74 }
75 pow_table[i] = tmp;
76 }
77 //populate envelope generator rate table, from small base table
78 for (int rate = 0; rate < 64; rate++) {
79 for (int cycle = 0; cycle < 8; cycle++) {
80 uint16_t value;
81 if (rate < 2) {
82 value = 0;
83 } else if (rate >= 60) {
84 value = 8;
85 } else if (rate < 8) {
86 value = rate_table_base[((rate & 6) == 6 ? 16 : 0) + cycle];
87 } else if (rate < 48) {
88 value = rate_table_base[(rate & 0x3) * 8 + cycle];
89 } else {
90 value = rate_table_base[32 + (rate & 0x3) * 8 + cycle] << ((rate - 48) >> 2);
91 }
92 rate_table[rate * 8 + cycle] = value;
93 }
94 }
95 //populate LFO PM table from small base table
96 //seems like there must be a better way to derive this
97 for (int freq = 0; freq < 128; freq++) {
98 for (int pms = 0; pms < 8; pms++) {
99 for (int step = 0; step < 32; step++) {
100 int16_t value = 0;
101 for (int bit = 0x40, shift = 0; bit > 0; bit >>= 1, shift++) {
102 if (freq & bit) {
103 value += lfo_pm_base[pms][(step & 0x8) ? 7-step & 7 : step & 7] >> shift;
104 }
105 }
106 if (step & 0x10) {
107 value = -value;
108 }
109 lfo_pm_table[freq * 256 + pms * 32 + step] = value;
110 }
111 }
112 }
113 }
114
115 int16_t ym_sine(uint16_t phase, int16_t mod, uint16_t env)
116 {
117 phase += mod;
118 if (env > MAX_ENVELOPE) {
119 env = MAX_ENVELOPE;
120 }
121 int16_t output = pow_table[sine_table[phase & 0x1FF] + env];
122 if (phase & 0x200) {
123 output = -output;
124 }
125 return output;
126 }
127
128 int16_t ym_opl_wave(uint16_t phase, int16_t mod, uint16_t env, uint8_t waveform)
129 {
130 if (env > MAX_OPL_ENVELOPE) {
131 env = MAX_OPL_ENVELOPE;
132 }
133
134 int16_t output;
135 switch (waveform)
136 {
137 default:
138 case 0:
139 output = pow_table[sine_table[phase & 0x1FF] + env];
140 if (phase & 0x200) {
141 output = -output;
142 }
143 break;
144 case 1:
145 if (phase & 0x200) {
146 output = 0;
147 } else {
148 output = pow_table[sine_table[phase & 0x1FF] + env];
149 }
150 break;
151 case 2:
152 output = pow_table[sine_table[phase & 0x1FF] + env];
153 break;
154 case 3:
155 if (phase & 0x100) {
156 output = 0;
157 } else {
158 output = pow_table[sine_table[phase & 0xFF] + env];
159 }
160 break;
161 case 4:
162 if (phase & 0x200) {
163 output = 0;
164 } else {
165 output = pow_table[sine_table[(phase & 0xFF) << 1] + env];
166 if (phase & 0x100) {
167 output = -output;
168 }
169 }
170 break;
171 case 5:
172 if (phase & 0x200) {
173 output = 0;
174 } else {
175 output = pow_table[sine_table[(phase & 0xFF) << 1] + env];
176 }
177 break;
178 case 6:
179 output = pow_table[env];
180 if (phase & 0x200) {
181 output = -output;
182 }
183 break;
184 case 7:
185 if (phase & 0x200) {
186 output = -pow_table[((~phase) & 0x1FF) << 3 + env];
187 } else {
188 output = pow_table[(phase & 0x1FF) << 3 + env];
189 }
190 break;
191 }
192 return output;
193 }