Mercurial > repos > blastem
comparison zlib/crc32.c @ 1692:5dacaef602a7 segacd
Merge from default
author | Michael Pavone <pavone@retrodev.com> |
---|---|
date | Sat, 05 Jan 2019 00:58:08 -0800 |
parents | 00d788dac91a |
children |
comparison
equal
deleted
inserted
replaced
1504:95b3a1a8b26c | 1692:5dacaef602a7 |
---|---|
1 /* crc32.c -- compute the CRC-32 of a data stream | |
2 * Copyright (C) 1995-2006, 2010, 2011, 2012, 2016 Mark Adler | |
3 * For conditions of distribution and use, see copyright notice in zlib.h | |
4 * | |
5 * Thanks to Rodney Brown <rbrown64@csc.com.au> for his contribution of faster | |
6 * CRC methods: exclusive-oring 32 bits of data at a time, and pre-computing | |
7 * tables for updating the shift register in one step with three exclusive-ors | |
8 * instead of four steps with four exclusive-ors. This results in about a | |
9 * factor of two increase in speed on a Power PC G4 (PPC7455) using gcc -O3. | |
10 */ | |
11 | |
12 /* @(#) $Id$ */ | |
13 | |
14 /* | |
15 Note on the use of DYNAMIC_CRC_TABLE: there is no mutex or semaphore | |
16 protection on the static variables used to control the first-use generation | |
17 of the crc tables. Therefore, if you #define DYNAMIC_CRC_TABLE, you should | |
18 first call get_crc_table() to initialize the tables before allowing more than | |
19 one thread to use crc32(). | |
20 | |
21 DYNAMIC_CRC_TABLE and MAKECRCH can be #defined to write out crc32.h. | |
22 */ | |
23 | |
24 #ifdef MAKECRCH | |
25 # include <stdio.h> | |
26 # ifndef DYNAMIC_CRC_TABLE | |
27 # define DYNAMIC_CRC_TABLE | |
28 # endif /* !DYNAMIC_CRC_TABLE */ | |
29 #endif /* MAKECRCH */ | |
30 | |
31 #include "zutil.h" /* for STDC and FAR definitions */ | |
32 | |
33 /* Definitions for doing the crc four data bytes at a time. */ | |
34 #if !defined(NOBYFOUR) && defined(Z_U4) | |
35 # define BYFOUR | |
36 #endif | |
37 #ifdef BYFOUR | |
38 local unsigned long crc32_little OF((unsigned long, | |
39 const unsigned char FAR *, z_size_t)); | |
40 local unsigned long crc32_big OF((unsigned long, | |
41 const unsigned char FAR *, z_size_t)); | |
42 # define TBLS 8 | |
43 #else | |
44 # define TBLS 1 | |
45 #endif /* BYFOUR */ | |
46 | |
47 /* Local functions for crc concatenation */ | |
48 local unsigned long gf2_matrix_times OF((unsigned long *mat, | |
49 unsigned long vec)); | |
50 local void gf2_matrix_square OF((unsigned long *square, unsigned long *mat)); | |
51 local uLong crc32_combine_ OF((uLong crc1, uLong crc2, z_off64_t len2)); | |
52 | |
53 | |
54 #ifdef DYNAMIC_CRC_TABLE | |
55 | |
56 local volatile int crc_table_empty = 1; | |
57 local z_crc_t FAR crc_table[TBLS][256]; | |
58 local void make_crc_table OF((void)); | |
59 #ifdef MAKECRCH | |
60 local void write_table OF((FILE *, const z_crc_t FAR *)); | |
61 #endif /* MAKECRCH */ | |
62 /* | |
63 Generate tables for a byte-wise 32-bit CRC calculation on the polynomial: | |
64 x^32+x^26+x^23+x^22+x^16+x^12+x^11+x^10+x^8+x^7+x^5+x^4+x^2+x+1. | |
65 | |
66 Polynomials over GF(2) are represented in binary, one bit per coefficient, | |
67 with the lowest powers in the most significant bit. Then adding polynomials | |
68 is just exclusive-or, and multiplying a polynomial by x is a right shift by | |
69 one. If we call the above polynomial p, and represent a byte as the | |
70 polynomial q, also with the lowest power in the most significant bit (so the | |
71 byte 0xb1 is the polynomial x^7+x^3+x+1), then the CRC is (q*x^32) mod p, | |
72 where a mod b means the remainder after dividing a by b. | |
73 | |
74 This calculation is done using the shift-register method of multiplying and | |
75 taking the remainder. The register is initialized to zero, and for each | |
76 incoming bit, x^32 is added mod p to the register if the bit is a one (where | |
77 x^32 mod p is p+x^32 = x^26+...+1), and the register is multiplied mod p by | |
78 x (which is shifting right by one and adding x^32 mod p if the bit shifted | |
79 out is a one). We start with the highest power (least significant bit) of | |
80 q and repeat for all eight bits of q. | |
81 | |
82 The first table is simply the CRC of all possible eight bit values. This is | |
83 all the information needed to generate CRCs on data a byte at a time for all | |
84 combinations of CRC register values and incoming bytes. The remaining tables | |
85 allow for word-at-a-time CRC calculation for both big-endian and little- | |
86 endian machines, where a word is four bytes. | |
87 */ | |
88 local void make_crc_table() | |
89 { | |
90 z_crc_t c; | |
91 int n, k; | |
92 z_crc_t poly; /* polynomial exclusive-or pattern */ | |
93 /* terms of polynomial defining this crc (except x^32): */ | |
94 static volatile int first = 1; /* flag to limit concurrent making */ | |
95 static const unsigned char p[] = {0,1,2,4,5,7,8,10,11,12,16,22,23,26}; | |
96 | |
97 /* See if another task is already doing this (not thread-safe, but better | |
98 than nothing -- significantly reduces duration of vulnerability in | |
99 case the advice about DYNAMIC_CRC_TABLE is ignored) */ | |
100 if (first) { | |
101 first = 0; | |
102 | |
103 /* make exclusive-or pattern from polynomial (0xedb88320UL) */ | |
104 poly = 0; | |
105 for (n = 0; n < (int)(sizeof(p)/sizeof(unsigned char)); n++) | |
106 poly |= (z_crc_t)1 << (31 - p[n]); | |
107 | |
108 /* generate a crc for every 8-bit value */ | |
109 for (n = 0; n < 256; n++) { | |
110 c = (z_crc_t)n; | |
111 for (k = 0; k < 8; k++) | |
112 c = c & 1 ? poly ^ (c >> 1) : c >> 1; | |
113 crc_table[0][n] = c; | |
114 } | |
115 | |
116 #ifdef BYFOUR | |
117 /* generate crc for each value followed by one, two, and three zeros, | |
118 and then the byte reversal of those as well as the first table */ | |
119 for (n = 0; n < 256; n++) { | |
120 c = crc_table[0][n]; | |
121 crc_table[4][n] = ZSWAP32(c); | |
122 for (k = 1; k < 4; k++) { | |
123 c = crc_table[0][c & 0xff] ^ (c >> 8); | |
124 crc_table[k][n] = c; | |
125 crc_table[k + 4][n] = ZSWAP32(c); | |
126 } | |
127 } | |
128 #endif /* BYFOUR */ | |
129 | |
130 crc_table_empty = 0; | |
131 } | |
132 else { /* not first */ | |
133 /* wait for the other guy to finish (not efficient, but rare) */ | |
134 while (crc_table_empty) | |
135 ; | |
136 } | |
137 | |
138 #ifdef MAKECRCH | |
139 /* write out CRC tables to crc32.h */ | |
140 { | |
141 FILE *out; | |
142 | |
143 out = fopen("crc32.h", "w"); | |
144 if (out == NULL) return; | |
145 fprintf(out, "/* crc32.h -- tables for rapid CRC calculation\n"); | |
146 fprintf(out, " * Generated automatically by crc32.c\n */\n\n"); | |
147 fprintf(out, "local const z_crc_t FAR "); | |
148 fprintf(out, "crc_table[TBLS][256] =\n{\n {\n"); | |
149 write_table(out, crc_table[0]); | |
150 # ifdef BYFOUR | |
151 fprintf(out, "#ifdef BYFOUR\n"); | |
152 for (k = 1; k < 8; k++) { | |
153 fprintf(out, " },\n {\n"); | |
154 write_table(out, crc_table[k]); | |
155 } | |
156 fprintf(out, "#endif\n"); | |
157 # endif /* BYFOUR */ | |
158 fprintf(out, " }\n};\n"); | |
159 fclose(out); | |
160 } | |
161 #endif /* MAKECRCH */ | |
162 } | |
163 | |
164 #ifdef MAKECRCH | |
165 local void write_table(out, table) | |
166 FILE *out; | |
167 const z_crc_t FAR *table; | |
168 { | |
169 int n; | |
170 | |
171 for (n = 0; n < 256; n++) | |
172 fprintf(out, "%s0x%08lxUL%s", n % 5 ? "" : " ", | |
173 (unsigned long)(table[n]), | |
174 n == 255 ? "\n" : (n % 5 == 4 ? ",\n" : ", ")); | |
175 } | |
176 #endif /* MAKECRCH */ | |
177 | |
178 #else /* !DYNAMIC_CRC_TABLE */ | |
179 /* ======================================================================== | |
180 * Tables of CRC-32s of all single-byte values, made by make_crc_table(). | |
181 */ | |
182 #include "crc32.h" | |
183 #endif /* DYNAMIC_CRC_TABLE */ | |
184 | |
185 /* ========================================================================= | |
186 * This function can be used by asm versions of crc32() | |
187 */ | |
188 const z_crc_t FAR * ZEXPORT get_crc_table() | |
189 { | |
190 #ifdef DYNAMIC_CRC_TABLE | |
191 if (crc_table_empty) | |
192 make_crc_table(); | |
193 #endif /* DYNAMIC_CRC_TABLE */ | |
194 return (const z_crc_t FAR *)crc_table; | |
195 } | |
196 | |
197 /* ========================================================================= */ | |
198 #define DO1 crc = crc_table[0][((int)crc ^ (*buf++)) & 0xff] ^ (crc >> 8) | |
199 #define DO8 DO1; DO1; DO1; DO1; DO1; DO1; DO1; DO1 | |
200 | |
201 /* ========================================================================= */ | |
202 unsigned long ZEXPORT crc32_z(crc, buf, len) | |
203 unsigned long crc; | |
204 const unsigned char FAR *buf; | |
205 z_size_t len; | |
206 { | |
207 if (buf == Z_NULL) return 0UL; | |
208 | |
209 #ifdef DYNAMIC_CRC_TABLE | |
210 if (crc_table_empty) | |
211 make_crc_table(); | |
212 #endif /* DYNAMIC_CRC_TABLE */ | |
213 | |
214 #ifdef BYFOUR | |
215 if (sizeof(void *) == sizeof(ptrdiff_t)) { | |
216 z_crc_t endian; | |
217 | |
218 endian = 1; | |
219 if (*((unsigned char *)(&endian))) | |
220 return crc32_little(crc, buf, len); | |
221 else | |
222 return crc32_big(crc, buf, len); | |
223 } | |
224 #endif /* BYFOUR */ | |
225 crc = crc ^ 0xffffffffUL; | |
226 while (len >= 8) { | |
227 DO8; | |
228 len -= 8; | |
229 } | |
230 if (len) do { | |
231 DO1; | |
232 } while (--len); | |
233 return crc ^ 0xffffffffUL; | |
234 } | |
235 | |
236 /* ========================================================================= */ | |
237 unsigned long ZEXPORT crc32(crc, buf, len) | |
238 unsigned long crc; | |
239 const unsigned char FAR *buf; | |
240 uInt len; | |
241 { | |
242 return crc32_z(crc, buf, len); | |
243 } | |
244 | |
245 #ifdef BYFOUR | |
246 | |
247 /* | |
248 This BYFOUR code accesses the passed unsigned char * buffer with a 32-bit | |
249 integer pointer type. This violates the strict aliasing rule, where a | |
250 compiler can assume, for optimization purposes, that two pointers to | |
251 fundamentally different types won't ever point to the same memory. This can | |
252 manifest as a problem only if one of the pointers is written to. This code | |
253 only reads from those pointers. So long as this code remains isolated in | |
254 this compilation unit, there won't be a problem. For this reason, this code | |
255 should not be copied and pasted into a compilation unit in which other code | |
256 writes to the buffer that is passed to these routines. | |
257 */ | |
258 | |
259 /* ========================================================================= */ | |
260 #define DOLIT4 c ^= *buf4++; \ | |
261 c = crc_table[3][c & 0xff] ^ crc_table[2][(c >> 8) & 0xff] ^ \ | |
262 crc_table[1][(c >> 16) & 0xff] ^ crc_table[0][c >> 24] | |
263 #define DOLIT32 DOLIT4; DOLIT4; DOLIT4; DOLIT4; DOLIT4; DOLIT4; DOLIT4; DOLIT4 | |
264 | |
265 /* ========================================================================= */ | |
266 local unsigned long crc32_little(crc, buf, len) | |
267 unsigned long crc; | |
268 const unsigned char FAR *buf; | |
269 z_size_t len; | |
270 { | |
271 register z_crc_t c; | |
272 register const z_crc_t FAR *buf4; | |
273 | |
274 c = (z_crc_t)crc; | |
275 c = ~c; | |
276 while (len && ((ptrdiff_t)buf & 3)) { | |
277 c = crc_table[0][(c ^ *buf++) & 0xff] ^ (c >> 8); | |
278 len--; | |
279 } | |
280 | |
281 buf4 = (const z_crc_t FAR *)(const void FAR *)buf; | |
282 while (len >= 32) { | |
283 DOLIT32; | |
284 len -= 32; | |
285 } | |
286 while (len >= 4) { | |
287 DOLIT4; | |
288 len -= 4; | |
289 } | |
290 buf = (const unsigned char FAR *)buf4; | |
291 | |
292 if (len) do { | |
293 c = crc_table[0][(c ^ *buf++) & 0xff] ^ (c >> 8); | |
294 } while (--len); | |
295 c = ~c; | |
296 return (unsigned long)c; | |
297 } | |
298 | |
299 /* ========================================================================= */ | |
300 #define DOBIG4 c ^= *buf4++; \ | |
301 c = crc_table[4][c & 0xff] ^ crc_table[5][(c >> 8) & 0xff] ^ \ | |
302 crc_table[6][(c >> 16) & 0xff] ^ crc_table[7][c >> 24] | |
303 #define DOBIG32 DOBIG4; DOBIG4; DOBIG4; DOBIG4; DOBIG4; DOBIG4; DOBIG4; DOBIG4 | |
304 | |
305 /* ========================================================================= */ | |
306 local unsigned long crc32_big(crc, buf, len) | |
307 unsigned long crc; | |
308 const unsigned char FAR *buf; | |
309 z_size_t len; | |
310 { | |
311 register z_crc_t c; | |
312 register const z_crc_t FAR *buf4; | |
313 | |
314 c = ZSWAP32((z_crc_t)crc); | |
315 c = ~c; | |
316 while (len && ((ptrdiff_t)buf & 3)) { | |
317 c = crc_table[4][(c >> 24) ^ *buf++] ^ (c << 8); | |
318 len--; | |
319 } | |
320 | |
321 buf4 = (const z_crc_t FAR *)(const void FAR *)buf; | |
322 while (len >= 32) { | |
323 DOBIG32; | |
324 len -= 32; | |
325 } | |
326 while (len >= 4) { | |
327 DOBIG4; | |
328 len -= 4; | |
329 } | |
330 buf = (const unsigned char FAR *)buf4; | |
331 | |
332 if (len) do { | |
333 c = crc_table[4][(c >> 24) ^ *buf++] ^ (c << 8); | |
334 } while (--len); | |
335 c = ~c; | |
336 return (unsigned long)(ZSWAP32(c)); | |
337 } | |
338 | |
339 #endif /* BYFOUR */ | |
340 | |
341 #define GF2_DIM 32 /* dimension of GF(2) vectors (length of CRC) */ | |
342 | |
343 /* ========================================================================= */ | |
344 local unsigned long gf2_matrix_times(mat, vec) | |
345 unsigned long *mat; | |
346 unsigned long vec; | |
347 { | |
348 unsigned long sum; | |
349 | |
350 sum = 0; | |
351 while (vec) { | |
352 if (vec & 1) | |
353 sum ^= *mat; | |
354 vec >>= 1; | |
355 mat++; | |
356 } | |
357 return sum; | |
358 } | |
359 | |
360 /* ========================================================================= */ | |
361 local void gf2_matrix_square(square, mat) | |
362 unsigned long *square; | |
363 unsigned long *mat; | |
364 { | |
365 int n; | |
366 | |
367 for (n = 0; n < GF2_DIM; n++) | |
368 square[n] = gf2_matrix_times(mat, mat[n]); | |
369 } | |
370 | |
371 /* ========================================================================= */ | |
372 local uLong crc32_combine_(crc1, crc2, len2) | |
373 uLong crc1; | |
374 uLong crc2; | |
375 z_off64_t len2; | |
376 { | |
377 int n; | |
378 unsigned long row; | |
379 unsigned long even[GF2_DIM]; /* even-power-of-two zeros operator */ | |
380 unsigned long odd[GF2_DIM]; /* odd-power-of-two zeros operator */ | |
381 | |
382 /* degenerate case (also disallow negative lengths) */ | |
383 if (len2 <= 0) | |
384 return crc1; | |
385 | |
386 /* put operator for one zero bit in odd */ | |
387 odd[0] = 0xedb88320UL; /* CRC-32 polynomial */ | |
388 row = 1; | |
389 for (n = 1; n < GF2_DIM; n++) { | |
390 odd[n] = row; | |
391 row <<= 1; | |
392 } | |
393 | |
394 /* put operator for two zero bits in even */ | |
395 gf2_matrix_square(even, odd); | |
396 | |
397 /* put operator for four zero bits in odd */ | |
398 gf2_matrix_square(odd, even); | |
399 | |
400 /* apply len2 zeros to crc1 (first square will put the operator for one | |
401 zero byte, eight zero bits, in even) */ | |
402 do { | |
403 /* apply zeros operator for this bit of len2 */ | |
404 gf2_matrix_square(even, odd); | |
405 if (len2 & 1) | |
406 crc1 = gf2_matrix_times(even, crc1); | |
407 len2 >>= 1; | |
408 | |
409 /* if no more bits set, then done */ | |
410 if (len2 == 0) | |
411 break; | |
412 | |
413 /* another iteration of the loop with odd and even swapped */ | |
414 gf2_matrix_square(odd, even); | |
415 if (len2 & 1) | |
416 crc1 = gf2_matrix_times(odd, crc1); | |
417 len2 >>= 1; | |
418 | |
419 /* if no more bits set, then done */ | |
420 } while (len2 != 0); | |
421 | |
422 /* return combined crc */ | |
423 crc1 ^= crc2; | |
424 return crc1; | |
425 } | |
426 | |
427 /* ========================================================================= */ | |
428 uLong ZEXPORT crc32_combine(crc1, crc2, len2) | |
429 uLong crc1; | |
430 uLong crc2; | |
431 z_off_t len2; | |
432 { | |
433 return crc32_combine_(crc1, crc2, len2); | |
434 } | |
435 | |
436 uLong ZEXPORT crc32_combine64(crc1, crc2, len2) | |
437 uLong crc1; | |
438 uLong crc2; | |
439 z_off64_t len2; | |
440 { | |
441 return crc32_combine_(crc1, crc2, len2); | |
442 } |