comparison zlib/trees.c @ 2690:9ef72ee5c0b0

Update vendored zlib to 1.3.1
author Michael Pavone <pavone@retrodev.com>
date Sun, 15 Jun 2025 15:39:33 -0700
parents 00d788dac91a
children
comparison
equal deleted inserted replaced
2689:bd6e33de0972 2690:9ef72ee5c0b0
1 /* trees.c -- output deflated data using Huffman coding 1 /* trees.c -- output deflated data using Huffman coding
2 * Copyright (C) 1995-2017 Jean-loup Gailly 2 * Copyright (C) 1995-2024 Jean-loup Gailly
3 * detect_data_type() function provided freely by Cosmin Truta, 2006 3 * detect_data_type() function provided freely by Cosmin Truta, 2006
4 * For conditions of distribution and use, see copyright notice in zlib.h 4 * For conditions of distribution and use, see copyright notice in zlib.h
5 */ 5 */
6 6
7 /* 7 /*
120 int extra_base; /* base index for extra_bits */ 120 int extra_base; /* base index for extra_bits */
121 int elems; /* max number of elements in the tree */ 121 int elems; /* max number of elements in the tree */
122 int max_length; /* max bit length for the codes */ 122 int max_length; /* max bit length for the codes */
123 }; 123 };
124 124
125 local const static_tree_desc static_l_desc = 125 #ifdef NO_INIT_GLOBAL_POINTERS
126 # define TCONST
127 #else
128 # define TCONST const
129 #endif
130
131 local TCONST static_tree_desc static_l_desc =
126 {static_ltree, extra_lbits, LITERALS+1, L_CODES, MAX_BITS}; 132 {static_ltree, extra_lbits, LITERALS+1, L_CODES, MAX_BITS};
127 133
128 local const static_tree_desc static_d_desc = 134 local TCONST static_tree_desc static_d_desc =
129 {static_dtree, extra_dbits, 0, D_CODES, MAX_BITS}; 135 {static_dtree, extra_dbits, 0, D_CODES, MAX_BITS};
130 136
131 local const static_tree_desc static_bl_desc = 137 local TCONST static_tree_desc static_bl_desc =
132 {(const ct_data *)0, extra_blbits, 0, BL_CODES, MAX_BL_BITS}; 138 {(const ct_data *)0, extra_blbits, 0, BL_CODES, MAX_BL_BITS};
133 139
134 /* =========================================================================== 140 /* ===========================================================================
135 * Local (static) routines in this file. 141 * Output a short LSB first on the stream.
136 */ 142 * IN assertion: there is enough room in pendingBuf.
137 143 */
138 local void tr_static_init OF((void)); 144 #define put_short(s, w) { \
139 local void init_block OF((deflate_state *s)); 145 put_byte(s, (uch)((w) & 0xff)); \
140 local void pqdownheap OF((deflate_state *s, ct_data *tree, int k)); 146 put_byte(s, (uch)((ush)(w) >> 8)); \
141 local void gen_bitlen OF((deflate_state *s, tree_desc *desc)); 147 }
142 local void gen_codes OF((ct_data *tree, int max_code, ushf *bl_count)); 148
143 local void build_tree OF((deflate_state *s, tree_desc *desc)); 149 /* ===========================================================================
144 local void scan_tree OF((deflate_state *s, ct_data *tree, int max_code)); 150 * Reverse the first len bits of a code, using straightforward code (a faster
145 local void send_tree OF((deflate_state *s, ct_data *tree, int max_code)); 151 * method would use a table)
146 local int build_bl_tree OF((deflate_state *s)); 152 * IN assertion: 1 <= len <= 15
147 local void send_all_trees OF((deflate_state *s, int lcodes, int dcodes, 153 */
148 int blcodes)); 154 local unsigned bi_reverse(unsigned code, int len) {
149 local void compress_block OF((deflate_state *s, const ct_data *ltree, 155 register unsigned res = 0;
150 const ct_data *dtree)); 156 do {
151 local int detect_data_type OF((deflate_state *s)); 157 res |= code & 1;
152 local unsigned bi_reverse OF((unsigned value, int length)); 158 code >>= 1, res <<= 1;
153 local void bi_windup OF((deflate_state *s)); 159 } while (--len > 0);
154 local void bi_flush OF((deflate_state *s)); 160 return res >> 1;
161 }
162
163 /* ===========================================================================
164 * Flush the bit buffer, keeping at most 7 bits in it.
165 */
166 local void bi_flush(deflate_state *s) {
167 if (s->bi_valid == 16) {
168 put_short(s, s->bi_buf);
169 s->bi_buf = 0;
170 s->bi_valid = 0;
171 } else if (s->bi_valid >= 8) {
172 put_byte(s, (Byte)s->bi_buf);
173 s->bi_buf >>= 8;
174 s->bi_valid -= 8;
175 }
176 }
177
178 /* ===========================================================================
179 * Flush the bit buffer and align the output on a byte boundary
180 */
181 local void bi_windup(deflate_state *s) {
182 if (s->bi_valid > 8) {
183 put_short(s, s->bi_buf);
184 } else if (s->bi_valid > 0) {
185 put_byte(s, (Byte)s->bi_buf);
186 }
187 s->bi_buf = 0;
188 s->bi_valid = 0;
189 #ifdef ZLIB_DEBUG
190 s->bits_sent = (s->bits_sent + 7) & ~7;
191 #endif
192 }
193
194 /* ===========================================================================
195 * Generate the codes for a given tree and bit counts (which need not be
196 * optimal).
197 * IN assertion: the array bl_count contains the bit length statistics for
198 * the given tree and the field len is set for all tree elements.
199 * OUT assertion: the field code is set for all tree elements of non
200 * zero code length.
201 */
202 local void gen_codes(ct_data *tree, int max_code, ushf *bl_count) {
203 ush next_code[MAX_BITS+1]; /* next code value for each bit length */
204 unsigned code = 0; /* running code value */
205 int bits; /* bit index */
206 int n; /* code index */
207
208 /* The distribution counts are first used to generate the code values
209 * without bit reversal.
210 */
211 for (bits = 1; bits <= MAX_BITS; bits++) {
212 code = (code + bl_count[bits - 1]) << 1;
213 next_code[bits] = (ush)code;
214 }
215 /* Check that the bit counts in bl_count are consistent. The last code
216 * must be all ones.
217 */
218 Assert (code + bl_count[MAX_BITS] - 1 == (1 << MAX_BITS) - 1,
219 "inconsistent bit counts");
220 Tracev((stderr,"\ngen_codes: max_code %d ", max_code));
221
222 for (n = 0; n <= max_code; n++) {
223 int len = tree[n].Len;
224 if (len == 0) continue;
225 /* Now reverse the bits */
226 tree[n].Code = (ush)bi_reverse(next_code[len]++, len);
227
228 Tracecv(tree != static_ltree, (stderr,"\nn %3d %c l %2d c %4x (%x) ",
229 n, (isgraph(n) ? n : ' '), len, tree[n].Code, next_code[len] - 1));
230 }
231 }
155 232
156 #ifdef GEN_TREES_H 233 #ifdef GEN_TREES_H
157 local void gen_trees_header OF((void)); 234 local void gen_trees_header(void);
158 #endif 235 #endif
159 236
160 #ifndef ZLIB_DEBUG 237 #ifndef ZLIB_DEBUG
161 # define send_code(s, c, tree) send_bits(s, tree[c].Code, tree[c].Len) 238 # define send_code(s, c, tree) send_bits(s, tree[c].Code, tree[c].Len)
162 /* Send a code of the given tree. c and tree must not have side effects */ 239 /* Send a code of the given tree. c and tree must not have side effects */
166 { if (z_verbose>2) fprintf(stderr,"\ncd %3d ",(c)); \ 243 { if (z_verbose>2) fprintf(stderr,"\ncd %3d ",(c)); \
167 send_bits(s, tree[c].Code, tree[c].Len); } 244 send_bits(s, tree[c].Code, tree[c].Len); }
168 #endif 245 #endif
169 246
170 /* =========================================================================== 247 /* ===========================================================================
171 * Output a short LSB first on the stream.
172 * IN assertion: there is enough room in pendingBuf.
173 */
174 #define put_short(s, w) { \
175 put_byte(s, (uch)((w) & 0xff)); \
176 put_byte(s, (uch)((ush)(w) >> 8)); \
177 }
178
179 /* ===========================================================================
180 * Send a value on a given number of bits. 248 * Send a value on a given number of bits.
181 * IN assertion: length <= 16 and value fits in length bits. 249 * IN assertion: length <= 16 and value fits in length bits.
182 */ 250 */
183 #ifdef ZLIB_DEBUG 251 #ifdef ZLIB_DEBUG
184 local void send_bits OF((deflate_state *s, int value, int length)); 252 local void send_bits(deflate_state *s, int value, int length) {
185
186 local void send_bits(s, value, length)
187 deflate_state *s;
188 int value; /* value to send */
189 int length; /* number of bits */
190 {
191 Tracevv((stderr," l %2d v %4x ", length, value)); 253 Tracevv((stderr," l %2d v %4x ", length, value));
192 Assert(length > 0 && length <= 15, "invalid length"); 254 Assert(length > 0 && length <= 15, "invalid length");
193 s->bits_sent += (ulg)length; 255 s->bits_sent += (ulg)length;
194 256
195 /* If not enough room in bi_buf, use (valid) bits from bi_buf and 257 /* If not enough room in bi_buf, use (valid) bits from bi_buf and
196 * (16 - bi_valid) bits from value, leaving (width - (16-bi_valid)) 258 * (16 - bi_valid) bits from value, leaving (width - (16 - bi_valid))
197 * unused bits in value. 259 * unused bits in value.
198 */ 260 */
199 if (s->bi_valid > (int)Buf_size - length) { 261 if (s->bi_valid > (int)Buf_size - length) {
200 s->bi_buf |= (ush)value << s->bi_valid; 262 s->bi_buf |= (ush)value << s->bi_valid;
201 put_short(s, s->bi_buf); 263 put_short(s, s->bi_buf);
227 /* the arguments must not have side effects */ 289 /* the arguments must not have side effects */
228 290
229 /* =========================================================================== 291 /* ===========================================================================
230 * Initialize the various 'constant' tables. 292 * Initialize the various 'constant' tables.
231 */ 293 */
232 local void tr_static_init() 294 local void tr_static_init(void) {
233 {
234 #if defined(GEN_TREES_H) || !defined(STDC) 295 #if defined(GEN_TREES_H) || !defined(STDC)
235 static int static_init_done = 0; 296 static int static_init_done = 0;
236 int n; /* iterates over tree elements */ 297 int n; /* iterates over tree elements */
237 int bits; /* bit counter */ 298 int bits; /* bit counter */
238 int length; /* length value */ 299 int length; /* length value */
254 315
255 /* Initialize the mapping length (0..255) -> length code (0..28) */ 316 /* Initialize the mapping length (0..255) -> length code (0..28) */
256 length = 0; 317 length = 0;
257 for (code = 0; code < LENGTH_CODES-1; code++) { 318 for (code = 0; code < LENGTH_CODES-1; code++) {
258 base_length[code] = length; 319 base_length[code] = length;
259 for (n = 0; n < (1<<extra_lbits[code]); n++) { 320 for (n = 0; n < (1 << extra_lbits[code]); n++) {
260 _length_code[length++] = (uch)code; 321 _length_code[length++] = (uch)code;
261 } 322 }
262 } 323 }
263 Assert (length == 256, "tr_static_init: length != 256"); 324 Assert (length == 256, "tr_static_init: length != 256");
264 /* Note that the length 255 (match length 258) can be represented 325 /* Note that the length 255 (match length 258) can be represented
265 * in two different ways: code 284 + 5 bits or code 285, so we 326 * in two different ways: code 284 + 5 bits or code 285, so we
266 * overwrite length_code[255] to use the best encoding: 327 * overwrite length_code[255] to use the best encoding:
267 */ 328 */
268 _length_code[length-1] = (uch)code; 329 _length_code[length - 1] = (uch)code;
269 330
270 /* Initialize the mapping dist (0..32K) -> dist code (0..29) */ 331 /* Initialize the mapping dist (0..32K) -> dist code (0..29) */
271 dist = 0; 332 dist = 0;
272 for (code = 0 ; code < 16; code++) { 333 for (code = 0 ; code < 16; code++) {
273 base_dist[code] = dist; 334 base_dist[code] = dist;
274 for (n = 0; n < (1<<extra_dbits[code]); n++) { 335 for (n = 0; n < (1 << extra_dbits[code]); n++) {
275 _dist_code[dist++] = (uch)code; 336 _dist_code[dist++] = (uch)code;
276 } 337 }
277 } 338 }
278 Assert (dist == 256, "tr_static_init: dist != 256"); 339 Assert (dist == 256, "tr_static_init: dist != 256");
279 dist >>= 7; /* from now on, all distances are divided by 128 */ 340 dist >>= 7; /* from now on, all distances are divided by 128 */
280 for ( ; code < D_CODES; code++) { 341 for ( ; code < D_CODES; code++) {
281 base_dist[code] = dist << 7; 342 base_dist[code] = dist << 7;
282 for (n = 0; n < (1<<(extra_dbits[code]-7)); n++) { 343 for (n = 0; n < (1 << (extra_dbits[code] - 7)); n++) {
283 _dist_code[256 + dist++] = (uch)code; 344 _dist_code[256 + dist++] = (uch)code;
284 } 345 }
285 } 346 }
286 Assert (dist == 256, "tr_static_init: 256+dist != 512"); 347 Assert (dist == 256, "tr_static_init: 256 + dist != 512");
287 348
288 /* Construct the codes of the static literal tree */ 349 /* Construct the codes of the static literal tree */
289 for (bits = 0; bits <= MAX_BITS; bits++) bl_count[bits] = 0; 350 for (bits = 0; bits <= MAX_BITS; bits++) bl_count[bits] = 0;
290 n = 0; 351 n = 0;
291 while (n <= 143) static_ltree[n++].Len = 8, bl_count[8]++; 352 while (n <= 143) static_ltree[n++].Len = 8, bl_count[8]++;
310 # endif 371 # endif
311 #endif /* defined(GEN_TREES_H) || !defined(STDC) */ 372 #endif /* defined(GEN_TREES_H) || !defined(STDC) */
312 } 373 }
313 374
314 /* =========================================================================== 375 /* ===========================================================================
315 * Genererate the file trees.h describing the static trees. 376 * Generate the file trees.h describing the static trees.
316 */ 377 */
317 #ifdef GEN_TREES_H 378 #ifdef GEN_TREES_H
318 # ifndef ZLIB_DEBUG 379 # ifndef ZLIB_DEBUG
319 # include <stdio.h> 380 # include <stdio.h>
320 # endif 381 # endif
321 382
322 # define SEPARATOR(i, last, width) \ 383 # define SEPARATOR(i, last, width) \
323 ((i) == (last)? "\n};\n\n" : \ 384 ((i) == (last)? "\n};\n\n" : \
324 ((i) % (width) == (width)-1 ? ",\n" : ", ")) 385 ((i) % (width) == (width) - 1 ? ",\n" : ", "))
325 386
326 void gen_trees_header() 387 void gen_trees_header(void) {
327 {
328 FILE *header = fopen("trees.h", "w"); 388 FILE *header = fopen("trees.h", "w");
329 int i; 389 int i;
330 390
331 Assert (header != NULL, "Can't open trees.h"); 391 Assert (header != NULL, "Can't open trees.h");
332 fprintf(header, 392 fprintf(header,
372 fclose(header); 432 fclose(header);
373 } 433 }
374 #endif /* GEN_TREES_H */ 434 #endif /* GEN_TREES_H */
375 435
376 /* =========================================================================== 436 /* ===========================================================================
437 * Initialize a new block.
438 */
439 local void init_block(deflate_state *s) {
440 int n; /* iterates over tree elements */
441
442 /* Initialize the trees. */
443 for (n = 0; n < L_CODES; n++) s->dyn_ltree[n].Freq = 0;
444 for (n = 0; n < D_CODES; n++) s->dyn_dtree[n].Freq = 0;
445 for (n = 0; n < BL_CODES; n++) s->bl_tree[n].Freq = 0;
446
447 s->dyn_ltree[END_BLOCK].Freq = 1;
448 s->opt_len = s->static_len = 0L;
449 s->sym_next = s->matches = 0;
450 }
451
452 /* ===========================================================================
377 * Initialize the tree data structures for a new zlib stream. 453 * Initialize the tree data structures for a new zlib stream.
378 */ 454 */
379 void ZLIB_INTERNAL _tr_init(s) 455 void ZLIB_INTERNAL _tr_init(deflate_state *s) {
380 deflate_state *s;
381 {
382 tr_static_init(); 456 tr_static_init();
383 457
384 s->l_desc.dyn_tree = s->dyn_ltree; 458 s->l_desc.dyn_tree = s->dyn_ltree;
385 s->l_desc.stat_desc = &static_l_desc; 459 s->l_desc.stat_desc = &static_l_desc;
386 460
399 473
400 /* Initialize the first block of the first file: */ 474 /* Initialize the first block of the first file: */
401 init_block(s); 475 init_block(s);
402 } 476 }
403 477
404 /* ===========================================================================
405 * Initialize a new block.
406 */
407 local void init_block(s)
408 deflate_state *s;
409 {
410 int n; /* iterates over tree elements */
411
412 /* Initialize the trees. */
413 for (n = 0; n < L_CODES; n++) s->dyn_ltree[n].Freq = 0;
414 for (n = 0; n < D_CODES; n++) s->dyn_dtree[n].Freq = 0;
415 for (n = 0; n < BL_CODES; n++) s->bl_tree[n].Freq = 0;
416
417 s->dyn_ltree[END_BLOCK].Freq = 1;
418 s->opt_len = s->static_len = 0L;
419 s->last_lit = s->matches = 0;
420 }
421
422 #define SMALLEST 1 478 #define SMALLEST 1
423 /* Index within the heap array of least frequent node in the Huffman tree */ 479 /* Index within the heap array of least frequent node in the Huffman tree */
424 480
425 481
426 /* =========================================================================== 482 /* ===========================================================================
446 * Restore the heap property by moving down the tree starting at node k, 502 * Restore the heap property by moving down the tree starting at node k,
447 * exchanging a node with the smallest of its two sons if necessary, stopping 503 * exchanging a node with the smallest of its two sons if necessary, stopping
448 * when the heap property is re-established (each father smaller than its 504 * when the heap property is re-established (each father smaller than its
449 * two sons). 505 * two sons).
450 */ 506 */
451 local void pqdownheap(s, tree, k) 507 local void pqdownheap(deflate_state *s, ct_data *tree, int k) {
452 deflate_state *s;
453 ct_data *tree; /* the tree to restore */
454 int k; /* node to move down */
455 {
456 int v = s->heap[k]; 508 int v = s->heap[k];
457 int j = k << 1; /* left son of k */ 509 int j = k << 1; /* left son of k */
458 while (j <= s->heap_len) { 510 while (j <= s->heap_len) {
459 /* Set j to the smallest of the two sons: */ 511 /* Set j to the smallest of the two sons: */
460 if (j < s->heap_len && 512 if (j < s->heap_len &&
461 smaller(tree, s->heap[j+1], s->heap[j], s->depth)) { 513 smaller(tree, s->heap[j + 1], s->heap[j], s->depth)) {
462 j++; 514 j++;
463 } 515 }
464 /* Exit if v is smaller than both sons */ 516 /* Exit if v is smaller than both sons */
465 if (smaller(tree, v, s->heap[j], s->depth)) break; 517 if (smaller(tree, v, s->heap[j], s->depth)) break;
466 518
481 * OUT assertions: the field len is set to the optimal bit length, the 533 * OUT assertions: the field len is set to the optimal bit length, the
482 * array bl_count contains the frequencies for each bit length. 534 * array bl_count contains the frequencies for each bit length.
483 * The length opt_len is updated; static_len is also updated if stree is 535 * The length opt_len is updated; static_len is also updated if stree is
484 * not null. 536 * not null.
485 */ 537 */
486 local void gen_bitlen(s, desc) 538 local void gen_bitlen(deflate_state *s, tree_desc *desc) {
487 deflate_state *s;
488 tree_desc *desc; /* the tree descriptor */
489 {
490 ct_data *tree = desc->dyn_tree; 539 ct_data *tree = desc->dyn_tree;
491 int max_code = desc->max_code; 540 int max_code = desc->max_code;
492 const ct_data *stree = desc->stat_desc->static_tree; 541 const ct_data *stree = desc->stat_desc->static_tree;
493 const intf *extra = desc->stat_desc->extra_bits; 542 const intf *extra = desc->stat_desc->extra_bits;
494 int base = desc->stat_desc->extra_base; 543 int base = desc->stat_desc->extra_base;
505 /* In a first pass, compute the optimal bit lengths (which may 554 /* In a first pass, compute the optimal bit lengths (which may
506 * overflow in the case of the bit length tree). 555 * overflow in the case of the bit length tree).
507 */ 556 */
508 tree[s->heap[s->heap_max]].Len = 0; /* root of the heap */ 557 tree[s->heap[s->heap_max]].Len = 0; /* root of the heap */
509 558
510 for (h = s->heap_max+1; h < HEAP_SIZE; h++) { 559 for (h = s->heap_max + 1; h < HEAP_SIZE; h++) {
511 n = s->heap[h]; 560 n = s->heap[h];
512 bits = tree[tree[n].Dad].Len + 1; 561 bits = tree[tree[n].Dad].Len + 1;
513 if (bits > max_length) bits = max_length, overflow++; 562 if (bits > max_length) bits = max_length, overflow++;
514 tree[n].Len = (ush)bits; 563 tree[n].Len = (ush)bits;
515 /* We overwrite tree[n].Dad which is no longer needed */ 564 /* We overwrite tree[n].Dad which is no longer needed */
516 565
517 if (n > max_code) continue; /* not a leaf node */ 566 if (n > max_code) continue; /* not a leaf node */
518 567
519 s->bl_count[bits]++; 568 s->bl_count[bits]++;
520 xbits = 0; 569 xbits = 0;
521 if (n >= base) xbits = extra[n-base]; 570 if (n >= base) xbits = extra[n - base];
522 f = tree[n].Freq; 571 f = tree[n].Freq;
523 s->opt_len += (ulg)f * (unsigned)(bits + xbits); 572 s->opt_len += (ulg)f * (unsigned)(bits + xbits);
524 if (stree) s->static_len += (ulg)f * (unsigned)(stree[n].Len + xbits); 573 if (stree) s->static_len += (ulg)f * (unsigned)(stree[n].Len + xbits);
525 } 574 }
526 if (overflow == 0) return; 575 if (overflow == 0) return;
528 Tracev((stderr,"\nbit length overflow\n")); 577 Tracev((stderr,"\nbit length overflow\n"));
529 /* This happens for example on obj2 and pic of the Calgary corpus */ 578 /* This happens for example on obj2 and pic of the Calgary corpus */
530 579
531 /* Find the first bit length which could increase: */ 580 /* Find the first bit length which could increase: */
532 do { 581 do {
533 bits = max_length-1; 582 bits = max_length - 1;
534 while (s->bl_count[bits] == 0) bits--; 583 while (s->bl_count[bits] == 0) bits--;
535 s->bl_count[bits]--; /* move one leaf down the tree */ 584 s->bl_count[bits]--; /* move one leaf down the tree */
536 s->bl_count[bits+1] += 2; /* move one overflow item as its brother */ 585 s->bl_count[bits + 1] += 2; /* move one overflow item as its brother */
537 s->bl_count[max_length]--; 586 s->bl_count[max_length]--;
538 /* The brother of the overflow item also moves one step up, 587 /* The brother of the overflow item also moves one step up,
539 * but this does not affect bl_count[max_length] 588 * but this does not affect bl_count[max_length]
540 */ 589 */
541 overflow -= 2; 590 overflow -= 2;
559 n--; 608 n--;
560 } 609 }
561 } 610 }
562 } 611 }
563 612
564 /* =========================================================================== 613 #ifdef DUMP_BL_TREE
565 * Generate the codes for a given tree and bit counts (which need not be 614 # include <stdio.h>
566 * optimal). 615 #endif
567 * IN assertion: the array bl_count contains the bit length statistics for
568 * the given tree and the field len is set for all tree elements.
569 * OUT assertion: the field code is set for all tree elements of non
570 * zero code length.
571 */
572 local void gen_codes (tree, max_code, bl_count)
573 ct_data *tree; /* the tree to decorate */
574 int max_code; /* largest code with non zero frequency */
575 ushf *bl_count; /* number of codes at each bit length */
576 {
577 ush next_code[MAX_BITS+1]; /* next code value for each bit length */
578 unsigned code = 0; /* running code value */
579 int bits; /* bit index */
580 int n; /* code index */
581
582 /* The distribution counts are first used to generate the code values
583 * without bit reversal.
584 */
585 for (bits = 1; bits <= MAX_BITS; bits++) {
586 code = (code + bl_count[bits-1]) << 1;
587 next_code[bits] = (ush)code;
588 }
589 /* Check that the bit counts in bl_count are consistent. The last code
590 * must be all ones.
591 */
592 Assert (code + bl_count[MAX_BITS]-1 == (1<<MAX_BITS)-1,
593 "inconsistent bit counts");
594 Tracev((stderr,"\ngen_codes: max_code %d ", max_code));
595
596 for (n = 0; n <= max_code; n++) {
597 int len = tree[n].Len;
598 if (len == 0) continue;
599 /* Now reverse the bits */
600 tree[n].Code = (ush)bi_reverse(next_code[len]++, len);
601
602 Tracecv(tree != static_ltree, (stderr,"\nn %3d %c l %2d c %4x (%x) ",
603 n, (isgraph(n) ? n : ' '), len, tree[n].Code, next_code[len]-1));
604 }
605 }
606 616
607 /* =========================================================================== 617 /* ===========================================================================
608 * Construct one Huffman tree and assigns the code bit strings and lengths. 618 * Construct one Huffman tree and assigns the code bit strings and lengths.
609 * Update the total bit length for the current block. 619 * Update the total bit length for the current block.
610 * IN assertion: the field freq is set for all tree elements. 620 * IN assertion: the field freq is set for all tree elements.
611 * OUT assertions: the fields len and code are set to the optimal bit length 621 * OUT assertions: the fields len and code are set to the optimal bit length
612 * and corresponding code. The length opt_len is updated; static_len is 622 * and corresponding code. The length opt_len is updated; static_len is
613 * also updated if stree is not null. The field max_code is set. 623 * also updated if stree is not null. The field max_code is set.
614 */ 624 */
615 local void build_tree(s, desc) 625 local void build_tree(deflate_state *s, tree_desc *desc) {
616 deflate_state *s;
617 tree_desc *desc; /* the tree descriptor */
618 {
619 ct_data *tree = desc->dyn_tree; 626 ct_data *tree = desc->dyn_tree;
620 const ct_data *stree = desc->stat_desc->static_tree; 627 const ct_data *stree = desc->stat_desc->static_tree;
621 int elems = desc->stat_desc->elems; 628 int elems = desc->stat_desc->elems;
622 int n, m; /* iterate over heap elements */ 629 int n, m; /* iterate over heap elements */
623 int max_code = -1; /* largest code with non zero frequency */ 630 int max_code = -1; /* largest code with non zero frequency */
624 int node; /* new node being created */ 631 int node; /* new node being created */
625 632
626 /* Construct the initial heap, with least frequent element in 633 /* Construct the initial heap, with least frequent element in
627 * heap[SMALLEST]. The sons of heap[n] are heap[2*n] and heap[2*n+1]. 634 * heap[SMALLEST]. The sons of heap[n] are heap[2*n] and heap[2*n + 1].
628 * heap[0] is not used. 635 * heap[0] is not used.
629 */ 636 */
630 s->heap_len = 0, s->heap_max = HEAP_SIZE; 637 s->heap_len = 0, s->heap_max = HEAP_SIZE;
631 638
632 for (n = 0; n < elems; n++) { 639 for (n = 0; n < elems; n++) {
650 s->opt_len--; if (stree) s->static_len -= stree[node].Len; 657 s->opt_len--; if (stree) s->static_len -= stree[node].Len;
651 /* node is 0 or 1 so it does not have extra bits */ 658 /* node is 0 or 1 so it does not have extra bits */
652 } 659 }
653 desc->max_code = max_code; 660 desc->max_code = max_code;
654 661
655 /* The elements heap[heap_len/2+1 .. heap_len] are leaves of the tree, 662 /* The elements heap[heap_len/2 + 1 .. heap_len] are leaves of the tree,
656 * establish sub-heaps of increasing lengths: 663 * establish sub-heaps of increasing lengths:
657 */ 664 */
658 for (n = s->heap_len/2; n >= 1; n--) pqdownheap(s, tree, n); 665 for (n = s->heap_len/2; n >= 1; n--) pqdownheap(s, tree, n);
659 666
660 /* Construct the Huffman tree by repeatedly combining the least two 667 /* Construct the Huffman tree by repeatedly combining the least two
698 705
699 /* =========================================================================== 706 /* ===========================================================================
700 * Scan a literal or distance tree to determine the frequencies of the codes 707 * Scan a literal or distance tree to determine the frequencies of the codes
701 * in the bit length tree. 708 * in the bit length tree.
702 */ 709 */
703 local void scan_tree (s, tree, max_code) 710 local void scan_tree(deflate_state *s, ct_data *tree, int max_code) {
704 deflate_state *s;
705 ct_data *tree; /* the tree to be scanned */
706 int max_code; /* and its largest code of non zero frequency */
707 {
708 int n; /* iterates over all tree elements */ 711 int n; /* iterates over all tree elements */
709 int prevlen = -1; /* last emitted length */ 712 int prevlen = -1; /* last emitted length */
710 int curlen; /* length of current code */ 713 int curlen; /* length of current code */
711 int nextlen = tree[0].Len; /* length of next code */ 714 int nextlen = tree[0].Len; /* length of next code */
712 int count = 0; /* repeat count of the current code */ 715 int count = 0; /* repeat count of the current code */
713 int max_count = 7; /* max repeat count */ 716 int max_count = 7; /* max repeat count */
714 int min_count = 4; /* min repeat count */ 717 int min_count = 4; /* min repeat count */
715 718
716 if (nextlen == 0) max_count = 138, min_count = 3; 719 if (nextlen == 0) max_count = 138, min_count = 3;
717 tree[max_code+1].Len = (ush)0xffff; /* guard */ 720 tree[max_code + 1].Len = (ush)0xffff; /* guard */
718 721
719 for (n = 0; n <= max_code; n++) { 722 for (n = 0; n <= max_code; n++) {
720 curlen = nextlen; nextlen = tree[n+1].Len; 723 curlen = nextlen; nextlen = tree[n + 1].Len;
721 if (++count < max_count && curlen == nextlen) { 724 if (++count < max_count && curlen == nextlen) {
722 continue; 725 continue;
723 } else if (count < min_count) { 726 } else if (count < min_count) {
724 s->bl_tree[curlen].Freq += count; 727 s->bl_tree[curlen].Freq += count;
725 } else if (curlen != 0) { 728 } else if (curlen != 0) {
743 746
744 /* =========================================================================== 747 /* ===========================================================================
745 * Send a literal or distance tree in compressed form, using the codes in 748 * Send a literal or distance tree in compressed form, using the codes in
746 * bl_tree. 749 * bl_tree.
747 */ 750 */
748 local void send_tree (s, tree, max_code) 751 local void send_tree(deflate_state *s, ct_data *tree, int max_code) {
749 deflate_state *s;
750 ct_data *tree; /* the tree to be scanned */
751 int max_code; /* and its largest code of non zero frequency */
752 {
753 int n; /* iterates over all tree elements */ 752 int n; /* iterates over all tree elements */
754 int prevlen = -1; /* last emitted length */ 753 int prevlen = -1; /* last emitted length */
755 int curlen; /* length of current code */ 754 int curlen; /* length of current code */
756 int nextlen = tree[0].Len; /* length of next code */ 755 int nextlen = tree[0].Len; /* length of next code */
757 int count = 0; /* repeat count of the current code */ 756 int count = 0; /* repeat count of the current code */
758 int max_count = 7; /* max repeat count */ 757 int max_count = 7; /* max repeat count */
759 int min_count = 4; /* min repeat count */ 758 int min_count = 4; /* min repeat count */
760 759
761 /* tree[max_code+1].Len = -1; */ /* guard already set */ 760 /* tree[max_code + 1].Len = -1; */ /* guard already set */
762 if (nextlen == 0) max_count = 138, min_count = 3; 761 if (nextlen == 0) max_count = 138, min_count = 3;
763 762
764 for (n = 0; n <= max_code; n++) { 763 for (n = 0; n <= max_code; n++) {
765 curlen = nextlen; nextlen = tree[n+1].Len; 764 curlen = nextlen; nextlen = tree[n + 1].Len;
766 if (++count < max_count && curlen == nextlen) { 765 if (++count < max_count && curlen == nextlen) {
767 continue; 766 continue;
768 } else if (count < min_count) { 767 } else if (count < min_count) {
769 do { send_code(s, curlen, s->bl_tree); } while (--count != 0); 768 do { send_code(s, curlen, s->bl_tree); } while (--count != 0);
770 769
771 } else if (curlen != 0) { 770 } else if (curlen != 0) {
772 if (curlen != prevlen) { 771 if (curlen != prevlen) {
773 send_code(s, curlen, s->bl_tree); count--; 772 send_code(s, curlen, s->bl_tree); count--;
774 } 773 }
775 Assert(count >= 3 && count <= 6, " 3_6?"); 774 Assert(count >= 3 && count <= 6, " 3_6?");
776 send_code(s, REP_3_6, s->bl_tree); send_bits(s, count-3, 2); 775 send_code(s, REP_3_6, s->bl_tree); send_bits(s, count - 3, 2);
777 776
778 } else if (count <= 10) { 777 } else if (count <= 10) {
779 send_code(s, REPZ_3_10, s->bl_tree); send_bits(s, count-3, 3); 778 send_code(s, REPZ_3_10, s->bl_tree); send_bits(s, count - 3, 3);
780 779
781 } else { 780 } else {
782 send_code(s, REPZ_11_138, s->bl_tree); send_bits(s, count-11, 7); 781 send_code(s, REPZ_11_138, s->bl_tree); send_bits(s, count - 11, 7);
783 } 782 }
784 count = 0; prevlen = curlen; 783 count = 0; prevlen = curlen;
785 if (nextlen == 0) { 784 if (nextlen == 0) {
786 max_count = 138, min_count = 3; 785 max_count = 138, min_count = 3;
787 } else if (curlen == nextlen) { 786 } else if (curlen == nextlen) {
794 793
795 /* =========================================================================== 794 /* ===========================================================================
796 * Construct the Huffman tree for the bit lengths and return the index in 795 * Construct the Huffman tree for the bit lengths and return the index in
797 * bl_order of the last bit length code to send. 796 * bl_order of the last bit length code to send.
798 */ 797 */
799 local int build_bl_tree(s) 798 local int build_bl_tree(deflate_state *s) {
800 deflate_state *s;
801 {
802 int max_blindex; /* index of last bit length code of non zero freq */ 799 int max_blindex; /* index of last bit length code of non zero freq */
803 800
804 /* Determine the bit length frequencies for literal and distance trees */ 801 /* Determine the bit length frequencies for literal and distance trees */
805 scan_tree(s, (ct_data *)s->dyn_ltree, s->l_desc.max_code); 802 scan_tree(s, (ct_data *)s->dyn_ltree, s->l_desc.max_code);
806 scan_tree(s, (ct_data *)s->dyn_dtree, s->d_desc.max_code); 803 scan_tree(s, (ct_data *)s->dyn_dtree, s->d_desc.max_code);
807 804
808 /* Build the bit length tree: */ 805 /* Build the bit length tree: */
809 build_tree(s, (tree_desc *)(&(s->bl_desc))); 806 build_tree(s, (tree_desc *)(&(s->bl_desc)));
810 /* opt_len now includes the length of the tree representations, except 807 /* opt_len now includes the length of the tree representations, except the
811 * the lengths of the bit lengths codes and the 5+5+4 bits for the counts. 808 * lengths of the bit lengths codes and the 5 + 5 + 4 bits for the counts.
812 */ 809 */
813 810
814 /* Determine the number of bit length codes to send. The pkzip format 811 /* Determine the number of bit length codes to send. The pkzip format
815 * requires that at least 4 bit length codes be sent. (appnote.txt says 812 * requires that at least 4 bit length codes be sent. (appnote.txt says
816 * 3 but the actual value used is 4.) 813 * 3 but the actual value used is 4.)
817 */ 814 */
818 for (max_blindex = BL_CODES-1; max_blindex >= 3; max_blindex--) { 815 for (max_blindex = BL_CODES-1; max_blindex >= 3; max_blindex--) {
819 if (s->bl_tree[bl_order[max_blindex]].Len != 0) break; 816 if (s->bl_tree[bl_order[max_blindex]].Len != 0) break;
820 } 817 }
821 /* Update opt_len to include the bit length tree and counts */ 818 /* Update opt_len to include the bit length tree and counts */
822 s->opt_len += 3*((ulg)max_blindex+1) + 5+5+4; 819 s->opt_len += 3*((ulg)max_blindex + 1) + 5 + 5 + 4;
823 Tracev((stderr, "\ndyn trees: dyn %ld, stat %ld", 820 Tracev((stderr, "\ndyn trees: dyn %ld, stat %ld",
824 s->opt_len, s->static_len)); 821 s->opt_len, s->static_len));
825 822
826 return max_blindex; 823 return max_blindex;
827 } 824 }
829 /* =========================================================================== 826 /* ===========================================================================
830 * Send the header for a block using dynamic Huffman trees: the counts, the 827 * Send the header for a block using dynamic Huffman trees: the counts, the
831 * lengths of the bit length codes, the literal tree and the distance tree. 828 * lengths of the bit length codes, the literal tree and the distance tree.
832 * IN assertion: lcodes >= 257, dcodes >= 1, blcodes >= 4. 829 * IN assertion: lcodes >= 257, dcodes >= 1, blcodes >= 4.
833 */ 830 */
834 local void send_all_trees(s, lcodes, dcodes, blcodes) 831 local void send_all_trees(deflate_state *s, int lcodes, int dcodes,
835 deflate_state *s; 832 int blcodes) {
836 int lcodes, dcodes, blcodes; /* number of codes for each tree */
837 {
838 int rank; /* index in bl_order */ 833 int rank; /* index in bl_order */
839 834
840 Assert (lcodes >= 257 && dcodes >= 1 && blcodes >= 4, "not enough codes"); 835 Assert (lcodes >= 257 && dcodes >= 1 && blcodes >= 4, "not enough codes");
841 Assert (lcodes <= L_CODES && dcodes <= D_CODES && blcodes <= BL_CODES, 836 Assert (lcodes <= L_CODES && dcodes <= D_CODES && blcodes <= BL_CODES,
842 "too many codes"); 837 "too many codes");
843 Tracev((stderr, "\nbl counts: ")); 838 Tracev((stderr, "\nbl counts: "));
844 send_bits(s, lcodes-257, 5); /* not +255 as stated in appnote.txt */ 839 send_bits(s, lcodes - 257, 5); /* not +255 as stated in appnote.txt */
845 send_bits(s, dcodes-1, 5); 840 send_bits(s, dcodes - 1, 5);
846 send_bits(s, blcodes-4, 4); /* not -3 as stated in appnote.txt */ 841 send_bits(s, blcodes - 4, 4); /* not -3 as stated in appnote.txt */
847 for (rank = 0; rank < blcodes; rank++) { 842 for (rank = 0; rank < blcodes; rank++) {
848 Tracev((stderr, "\nbl code %2d ", bl_order[rank])); 843 Tracev((stderr, "\nbl code %2d ", bl_order[rank]));
849 send_bits(s, s->bl_tree[bl_order[rank]].Len, 3); 844 send_bits(s, s->bl_tree[bl_order[rank]].Len, 3);
850 } 845 }
851 Tracev((stderr, "\nbl tree: sent %ld", s->bits_sent)); 846 Tracev((stderr, "\nbl tree: sent %ld", s->bits_sent));
852 847
853 send_tree(s, (ct_data *)s->dyn_ltree, lcodes-1); /* literal tree */ 848 send_tree(s, (ct_data *)s->dyn_ltree, lcodes - 1); /* literal tree */
854 Tracev((stderr, "\nlit tree: sent %ld", s->bits_sent)); 849 Tracev((stderr, "\nlit tree: sent %ld", s->bits_sent));
855 850
856 send_tree(s, (ct_data *)s->dyn_dtree, dcodes-1); /* distance tree */ 851 send_tree(s, (ct_data *)s->dyn_dtree, dcodes - 1); /* distance tree */
857 Tracev((stderr, "\ndist tree: sent %ld", s->bits_sent)); 852 Tracev((stderr, "\ndist tree: sent %ld", s->bits_sent));
858 } 853 }
859 854
860 /* =========================================================================== 855 /* ===========================================================================
861 * Send a stored block 856 * Send a stored block
862 */ 857 */
863 void ZLIB_INTERNAL _tr_stored_block(s, buf, stored_len, last) 858 void ZLIB_INTERNAL _tr_stored_block(deflate_state *s, charf *buf,
864 deflate_state *s; 859 ulg stored_len, int last) {
865 charf *buf; /* input block */ 860 send_bits(s, (STORED_BLOCK<<1) + last, 3); /* send block type */
866 ulg stored_len; /* length of input block */
867 int last; /* one if this is the last block for a file */
868 {
869 send_bits(s, (STORED_BLOCK<<1)+last, 3); /* send block type */
870 bi_windup(s); /* align on byte boundary */ 861 bi_windup(s); /* align on byte boundary */
871 put_short(s, (ush)stored_len); 862 put_short(s, (ush)stored_len);
872 put_short(s, (ush)~stored_len); 863 put_short(s, (ush)~stored_len);
873 zmemcpy(s->pending_buf + s->pending, (Bytef *)buf, stored_len); 864 if (stored_len)
865 zmemcpy(s->pending_buf + s->pending, (Bytef *)buf, stored_len);
874 s->pending += stored_len; 866 s->pending += stored_len;
875 #ifdef ZLIB_DEBUG 867 #ifdef ZLIB_DEBUG
876 s->compressed_len = (s->compressed_len + 3 + 7) & (ulg)~7L; 868 s->compressed_len = (s->compressed_len + 3 + 7) & (ulg)~7L;
877 s->compressed_len += (stored_len + 4) << 3; 869 s->compressed_len += (stored_len + 4) << 3;
878 s->bits_sent += 2*16; 870 s->bits_sent += 2*16;
879 s->bits_sent += stored_len<<3; 871 s->bits_sent += stored_len << 3;
880 #endif 872 #endif
881 } 873 }
882 874
883 /* =========================================================================== 875 /* ===========================================================================
884 * Flush the bits in the bit buffer to pending output (leaves at most 7 bits) 876 * Flush the bits in the bit buffer to pending output (leaves at most 7 bits)
885 */ 877 */
886 void ZLIB_INTERNAL _tr_flush_bits(s) 878 void ZLIB_INTERNAL _tr_flush_bits(deflate_state *s) {
887 deflate_state *s;
888 {
889 bi_flush(s); 879 bi_flush(s);
890 } 880 }
891 881
892 /* =========================================================================== 882 /* ===========================================================================
893 * Send one empty static block to give enough lookahead for inflate. 883 * Send one empty static block to give enough lookahead for inflate.
894 * This takes 10 bits, of which 7 may remain in the bit buffer. 884 * This takes 10 bits, of which 7 may remain in the bit buffer.
895 */ 885 */
896 void ZLIB_INTERNAL _tr_align(s) 886 void ZLIB_INTERNAL _tr_align(deflate_state *s) {
897 deflate_state *s;
898 {
899 send_bits(s, STATIC_TREES<<1, 3); 887 send_bits(s, STATIC_TREES<<1, 3);
900 send_code(s, END_BLOCK, static_ltree); 888 send_code(s, END_BLOCK, static_ltree);
901 #ifdef ZLIB_DEBUG 889 #ifdef ZLIB_DEBUG
902 s->compressed_len += 10L; /* 3 for block type, 7 for EOB */ 890 s->compressed_len += 10L; /* 3 for block type, 7 for EOB */
903 #endif 891 #endif
904 bi_flush(s); 892 bi_flush(s);
905 } 893 }
906 894
907 /* =========================================================================== 895 /* ===========================================================================
896 * Send the block data compressed using the given Huffman trees
897 */
898 local void compress_block(deflate_state *s, const ct_data *ltree,
899 const ct_data *dtree) {
900 unsigned dist; /* distance of matched string */
901 int lc; /* match length or unmatched char (if dist == 0) */
902 unsigned sx = 0; /* running index in symbol buffers */
903 unsigned code; /* the code to send */
904 int extra; /* number of extra bits to send */
905
906 if (s->sym_next != 0) do {
907 #ifdef LIT_MEM
908 dist = s->d_buf[sx];
909 lc = s->l_buf[sx++];
910 #else
911 dist = s->sym_buf[sx++] & 0xff;
912 dist += (unsigned)(s->sym_buf[sx++] & 0xff) << 8;
913 lc = s->sym_buf[sx++];
914 #endif
915 if (dist == 0) {
916 send_code(s, lc, ltree); /* send a literal byte */
917 Tracecv(isgraph(lc), (stderr," '%c' ", lc));
918 } else {
919 /* Here, lc is the match length - MIN_MATCH */
920 code = _length_code[lc];
921 send_code(s, code + LITERALS + 1, ltree); /* send length code */
922 extra = extra_lbits[code];
923 if (extra != 0) {
924 lc -= base_length[code];
925 send_bits(s, lc, extra); /* send the extra length bits */
926 }
927 dist--; /* dist is now the match distance - 1 */
928 code = d_code(dist);
929 Assert (code < D_CODES, "bad d_code");
930
931 send_code(s, code, dtree); /* send the distance code */
932 extra = extra_dbits[code];
933 if (extra != 0) {
934 dist -= (unsigned)base_dist[code];
935 send_bits(s, dist, extra); /* send the extra distance bits */
936 }
937 } /* literal or match pair ? */
938
939 /* Check for no overlay of pending_buf on needed symbols */
940 #ifdef LIT_MEM
941 Assert(s->pending < 2 * (s->lit_bufsize + sx), "pendingBuf overflow");
942 #else
943 Assert(s->pending < s->lit_bufsize + sx, "pendingBuf overflow");
944 #endif
945
946 } while (sx < s->sym_next);
947
948 send_code(s, END_BLOCK, ltree);
949 }
950
951 /* ===========================================================================
952 * Check if the data type is TEXT or BINARY, using the following algorithm:
953 * - TEXT if the two conditions below are satisfied:
954 * a) There are no non-portable control characters belonging to the
955 * "block list" (0..6, 14..25, 28..31).
956 * b) There is at least one printable character belonging to the
957 * "allow list" (9 {TAB}, 10 {LF}, 13 {CR}, 32..255).
958 * - BINARY otherwise.
959 * - The following partially-portable control characters form a
960 * "gray list" that is ignored in this detection algorithm:
961 * (7 {BEL}, 8 {BS}, 11 {VT}, 12 {FF}, 26 {SUB}, 27 {ESC}).
962 * IN assertion: the fields Freq of dyn_ltree are set.
963 */
964 local int detect_data_type(deflate_state *s) {
965 /* block_mask is the bit mask of block-listed bytes
966 * set bits 0..6, 14..25, and 28..31
967 * 0xf3ffc07f = binary 11110011111111111100000001111111
968 */
969 unsigned long block_mask = 0xf3ffc07fUL;
970 int n;
971
972 /* Check for non-textual ("block-listed") bytes. */
973 for (n = 0; n <= 31; n++, block_mask >>= 1)
974 if ((block_mask & 1) && (s->dyn_ltree[n].Freq != 0))
975 return Z_BINARY;
976
977 /* Check for textual ("allow-listed") bytes. */
978 if (s->dyn_ltree[9].Freq != 0 || s->dyn_ltree[10].Freq != 0
979 || s->dyn_ltree[13].Freq != 0)
980 return Z_TEXT;
981 for (n = 32; n < LITERALS; n++)
982 if (s->dyn_ltree[n].Freq != 0)
983 return Z_TEXT;
984
985 /* There are no "block-listed" or "allow-listed" bytes:
986 * this stream either is empty or has tolerated ("gray-listed") bytes only.
987 */
988 return Z_BINARY;
989 }
990
991 /* ===========================================================================
908 * Determine the best encoding for the current block: dynamic trees, static 992 * Determine the best encoding for the current block: dynamic trees, static
909 * trees or store, and write out the encoded block. 993 * trees or store, and write out the encoded block.
910 */ 994 */
911 void ZLIB_INTERNAL _tr_flush_block(s, buf, stored_len, last) 995 void ZLIB_INTERNAL _tr_flush_block(deflate_state *s, charf *buf,
912 deflate_state *s; 996 ulg stored_len, int last) {
913 charf *buf; /* input block, or NULL if too old */
914 ulg stored_len; /* length of input block */
915 int last; /* one if this is the last block for a file */
916 {
917 ulg opt_lenb, static_lenb; /* opt_len and static_len in bytes */ 997 ulg opt_lenb, static_lenb; /* opt_len and static_len in bytes */
918 int max_blindex = 0; /* index of last bit length code of non zero freq */ 998 int max_blindex = 0; /* index of last bit length code of non zero freq */
919 999
920 /* Build the Huffman trees unless a stored block is forced */ 1000 /* Build the Huffman trees unless a stored block is forced */
921 if (s->level > 0) { 1001 if (s->level > 0) {
940 * in bl_order of the last bit length code to send. 1020 * in bl_order of the last bit length code to send.
941 */ 1021 */
942 max_blindex = build_bl_tree(s); 1022 max_blindex = build_bl_tree(s);
943 1023
944 /* Determine the best encoding. Compute the block lengths in bytes. */ 1024 /* Determine the best encoding. Compute the block lengths in bytes. */
945 opt_lenb = (s->opt_len+3+7)>>3; 1025 opt_lenb = (s->opt_len + 3 + 7) >> 3;
946 static_lenb = (s->static_len+3+7)>>3; 1026 static_lenb = (s->static_len + 3 + 7) >> 3;
947 1027
948 Tracev((stderr, "\nopt %lu(%lu) stat %lu(%lu) stored %lu lit %u ", 1028 Tracev((stderr, "\nopt %lu(%lu) stat %lu(%lu) stored %lu lit %u ",
949 opt_lenb, s->opt_len, static_lenb, s->static_len, stored_len, 1029 opt_lenb, s->opt_len, static_lenb, s->static_len, stored_len,
950 s->last_lit)); 1030 s->sym_next / 3));
951 1031
952 if (static_lenb <= opt_lenb) opt_lenb = static_lenb; 1032 #ifndef FORCE_STATIC
1033 if (static_lenb <= opt_lenb || s->strategy == Z_FIXED)
1034 #endif
1035 opt_lenb = static_lenb;
953 1036
954 } else { 1037 } else {
955 Assert(buf != (char*)0, "lost buf"); 1038 Assert(buf != (char*)0, "lost buf");
956 opt_lenb = static_lenb = stored_len + 5; /* force a stored block */ 1039 opt_lenb = static_lenb = stored_len + 5; /* force a stored block */
957 } 1040 }
958 1041
959 #ifdef FORCE_STORED 1042 #ifdef FORCE_STORED
960 if (buf != (char*)0) { /* force stored block */ 1043 if (buf != (char*)0) { /* force stored block */
961 #else 1044 #else
962 if (stored_len+4 <= opt_lenb && buf != (char*)0) { 1045 if (stored_len + 4 <= opt_lenb && buf != (char*)0) {
963 /* 4: two words for the lengths */ 1046 /* 4: two words for the lengths */
964 #endif 1047 #endif
965 /* The test buf != NULL is only necessary if LIT_BUFSIZE > WSIZE. 1048 /* The test buf != NULL is only necessary if LIT_BUFSIZE > WSIZE.
966 * Otherwise we can't have processed more than WSIZE input bytes since 1049 * Otherwise we can't have processed more than WSIZE input bytes since
967 * the last block flush, because compression would have been 1050 * the last block flush, because compression would have been
968 * successful. If LIT_BUFSIZE <= WSIZE, it is never too late to 1051 * successful. If LIT_BUFSIZE <= WSIZE, it is never too late to
969 * transform a block into a stored block. 1052 * transform a block into a stored block.
970 */ 1053 */
971 _tr_stored_block(s, buf, stored_len, last); 1054 _tr_stored_block(s, buf, stored_len, last);
972 1055
973 #ifdef FORCE_STATIC 1056 } else if (static_lenb == opt_lenb) {
974 } else if (static_lenb >= 0) { /* force static trees */ 1057 send_bits(s, (STATIC_TREES<<1) + last, 3);
975 #else
976 } else if (s->strategy == Z_FIXED || static_lenb == opt_lenb) {
977 #endif
978 send_bits(s, (STATIC_TREES<<1)+last, 3);
979 compress_block(s, (const ct_data *)static_ltree, 1058 compress_block(s, (const ct_data *)static_ltree,
980 (const ct_data *)static_dtree); 1059 (const ct_data *)static_dtree);
981 #ifdef ZLIB_DEBUG 1060 #ifdef ZLIB_DEBUG
982 s->compressed_len += 3 + s->static_len; 1061 s->compressed_len += 3 + s->static_len;
983 #endif 1062 #endif
984 } else { 1063 } else {
985 send_bits(s, (DYN_TREES<<1)+last, 3); 1064 send_bits(s, (DYN_TREES<<1) + last, 3);
986 send_all_trees(s, s->l_desc.max_code+1, s->d_desc.max_code+1, 1065 send_all_trees(s, s->l_desc.max_code + 1, s->d_desc.max_code + 1,
987 max_blindex+1); 1066 max_blindex + 1);
988 compress_block(s, (const ct_data *)s->dyn_ltree, 1067 compress_block(s, (const ct_data *)s->dyn_ltree,
989 (const ct_data *)s->dyn_dtree); 1068 (const ct_data *)s->dyn_dtree);
990 #ifdef ZLIB_DEBUG 1069 #ifdef ZLIB_DEBUG
991 s->compressed_len += 3 + s->opt_len; 1070 s->compressed_len += 3 + s->opt_len;
992 #endif 1071 #endif
1001 bi_windup(s); 1080 bi_windup(s);
1002 #ifdef ZLIB_DEBUG 1081 #ifdef ZLIB_DEBUG
1003 s->compressed_len += 7; /* align on byte boundary */ 1082 s->compressed_len += 7; /* align on byte boundary */
1004 #endif 1083 #endif
1005 } 1084 }
1006 Tracev((stderr,"\ncomprlen %lu(%lu) ", s->compressed_len>>3, 1085 Tracev((stderr,"\ncomprlen %lu(%lu) ", s->compressed_len >> 3,
1007 s->compressed_len-7*last)); 1086 s->compressed_len - 7*last));
1008 } 1087 }
1009 1088
1010 /* =========================================================================== 1089 /* ===========================================================================
1011 * Save the match info and tally the frequency counts. Return true if 1090 * Save the match info and tally the frequency counts. Return true if
1012 * the current block must be flushed. 1091 * the current block must be flushed.
1013 */ 1092 */
1014 int ZLIB_INTERNAL _tr_tally (s, dist, lc) 1093 int ZLIB_INTERNAL _tr_tally(deflate_state *s, unsigned dist, unsigned lc) {
1015 deflate_state *s; 1094 #ifdef LIT_MEM
1016 unsigned dist; /* distance of matched string */ 1095 s->d_buf[s->sym_next] = (ush)dist;
1017 unsigned lc; /* match length-MIN_MATCH or unmatched char (if dist==0) */ 1096 s->l_buf[s->sym_next++] = (uch)lc;
1018 { 1097 #else
1019 s->d_buf[s->last_lit] = (ush)dist; 1098 s->sym_buf[s->sym_next++] = (uch)dist;
1020 s->l_buf[s->last_lit++] = (uch)lc; 1099 s->sym_buf[s->sym_next++] = (uch)(dist >> 8);
1100 s->sym_buf[s->sym_next++] = (uch)lc;
1101 #endif
1021 if (dist == 0) { 1102 if (dist == 0) {
1022 /* lc is the unmatched char */ 1103 /* lc is the unmatched char */
1023 s->dyn_ltree[lc].Freq++; 1104 s->dyn_ltree[lc].Freq++;
1024 } else { 1105 } else {
1025 s->matches++; 1106 s->matches++;
1027 dist--; /* dist = match distance - 1 */ 1108 dist--; /* dist = match distance - 1 */
1028 Assert((ush)dist < (ush)MAX_DIST(s) && 1109 Assert((ush)dist < (ush)MAX_DIST(s) &&
1029 (ush)lc <= (ush)(MAX_MATCH-MIN_MATCH) && 1110 (ush)lc <= (ush)(MAX_MATCH-MIN_MATCH) &&
1030 (ush)d_code(dist) < (ush)D_CODES, "_tr_tally: bad match"); 1111 (ush)d_code(dist) < (ush)D_CODES, "_tr_tally: bad match");
1031 1112
1032 s->dyn_ltree[_length_code[lc]+LITERALS+1].Freq++; 1113 s->dyn_ltree[_length_code[lc] + LITERALS + 1].Freq++;
1033 s->dyn_dtree[d_code(dist)].Freq++; 1114 s->dyn_dtree[d_code(dist)].Freq++;
1034 } 1115 }
1035 1116 return (s->sym_next == s->sym_end);
1036 #ifdef TRUNCATE_BLOCK 1117 }
1037 /* Try to guess if it is profitable to stop the current block here */
1038 if ((s->last_lit & 0x1fff) == 0 && s->level > 2) {
1039 /* Compute an upper bound for the compressed length */
1040 ulg out_length = (ulg)s->last_lit*8L;
1041 ulg in_length = (ulg)((long)s->strstart - s->block_start);
1042 int dcode;
1043 for (dcode = 0; dcode < D_CODES; dcode++) {
1044 out_length += (ulg)s->dyn_dtree[dcode].Freq *
1045 (5L+extra_dbits[dcode]);
1046 }
1047 out_length >>= 3;
1048 Tracev((stderr,"\nlast_lit %u, in %ld, out ~%ld(%ld%%) ",
1049 s->last_lit, in_length, out_length,
1050 100L - out_length*100L/in_length));
1051 if (s->matches < s->last_lit/2 && out_length < in_length/2) return 1;
1052 }
1053 #endif
1054 return (s->last_lit == s->lit_bufsize-1);
1055 /* We avoid equality with lit_bufsize because of wraparound at 64K
1056 * on 16 bit machines and because stored blocks are restricted to
1057 * 64K-1 bytes.
1058 */
1059 }
1060
1061 /* ===========================================================================
1062 * Send the block data compressed using the given Huffman trees
1063 */
1064 local void compress_block(s, ltree, dtree)
1065 deflate_state *s;
1066 const ct_data *ltree; /* literal tree */
1067 const ct_data *dtree; /* distance tree */
1068 {
1069 unsigned dist; /* distance of matched string */
1070 int lc; /* match length or unmatched char (if dist == 0) */
1071 unsigned lx = 0; /* running index in l_buf */
1072 unsigned code; /* the code to send */
1073 int extra; /* number of extra bits to send */
1074
1075 if (s->last_lit != 0) do {
1076 dist = s->d_buf[lx];
1077 lc = s->l_buf[lx++];
1078 if (dist == 0) {
1079 send_code(s, lc, ltree); /* send a literal byte */
1080 Tracecv(isgraph(lc), (stderr," '%c' ", lc));
1081 } else {
1082 /* Here, lc is the match length - MIN_MATCH */
1083 code = _length_code[lc];
1084 send_code(s, code+LITERALS+1, ltree); /* send the length code */
1085 extra = extra_lbits[code];
1086 if (extra != 0) {
1087 lc -= base_length[code];
1088 send_bits(s, lc, extra); /* send the extra length bits */
1089 }
1090 dist--; /* dist is now the match distance - 1 */
1091 code = d_code(dist);
1092 Assert (code < D_CODES, "bad d_code");
1093
1094 send_code(s, code, dtree); /* send the distance code */
1095 extra = extra_dbits[code];
1096 if (extra != 0) {
1097 dist -= (unsigned)base_dist[code];
1098 send_bits(s, dist, extra); /* send the extra distance bits */
1099 }
1100 } /* literal or match pair ? */
1101
1102 /* Check that the overlay between pending_buf and d_buf+l_buf is ok: */
1103 Assert((uInt)(s->pending) < s->lit_bufsize + 2*lx,
1104 "pendingBuf overflow");
1105
1106 } while (lx < s->last_lit);
1107
1108 send_code(s, END_BLOCK, ltree);
1109 }
1110
1111 /* ===========================================================================
1112 * Check if the data type is TEXT or BINARY, using the following algorithm:
1113 * - TEXT if the two conditions below are satisfied:
1114 * a) There are no non-portable control characters belonging to the
1115 * "black list" (0..6, 14..25, 28..31).
1116 * b) There is at least one printable character belonging to the
1117 * "white list" (9 {TAB}, 10 {LF}, 13 {CR}, 32..255).
1118 * - BINARY otherwise.
1119 * - The following partially-portable control characters form a
1120 * "gray list" that is ignored in this detection algorithm:
1121 * (7 {BEL}, 8 {BS}, 11 {VT}, 12 {FF}, 26 {SUB}, 27 {ESC}).
1122 * IN assertion: the fields Freq of dyn_ltree are set.
1123 */
1124 local int detect_data_type(s)
1125 deflate_state *s;
1126 {
1127 /* black_mask is the bit mask of black-listed bytes
1128 * set bits 0..6, 14..25, and 28..31
1129 * 0xf3ffc07f = binary 11110011111111111100000001111111
1130 */
1131 unsigned long black_mask = 0xf3ffc07fUL;
1132 int n;
1133
1134 /* Check for non-textual ("black-listed") bytes. */
1135 for (n = 0; n <= 31; n++, black_mask >>= 1)
1136 if ((black_mask & 1) && (s->dyn_ltree[n].Freq != 0))
1137 return Z_BINARY;
1138
1139 /* Check for textual ("white-listed") bytes. */
1140 if (s->dyn_ltree[9].Freq != 0 || s->dyn_ltree[10].Freq != 0
1141 || s->dyn_ltree[13].Freq != 0)
1142 return Z_TEXT;
1143 for (n = 32; n < LITERALS; n++)
1144 if (s->dyn_ltree[n].Freq != 0)
1145 return Z_TEXT;
1146
1147 /* There are no "black-listed" or "white-listed" bytes:
1148 * this stream either is empty or has tolerated ("gray-listed") bytes only.
1149 */
1150 return Z_BINARY;
1151 }
1152
1153 /* ===========================================================================
1154 * Reverse the first len bits of a code, using straightforward code (a faster
1155 * method would use a table)
1156 * IN assertion: 1 <= len <= 15
1157 */
1158 local unsigned bi_reverse(code, len)
1159 unsigned code; /* the value to invert */
1160 int len; /* its bit length */
1161 {
1162 register unsigned res = 0;
1163 do {
1164 res |= code & 1;
1165 code >>= 1, res <<= 1;
1166 } while (--len > 0);
1167 return res >> 1;
1168 }
1169
1170 /* ===========================================================================
1171 * Flush the bit buffer, keeping at most 7 bits in it.
1172 */
1173 local void bi_flush(s)
1174 deflate_state *s;
1175 {
1176 if (s->bi_valid == 16) {
1177 put_short(s, s->bi_buf);
1178 s->bi_buf = 0;
1179 s->bi_valid = 0;
1180 } else if (s->bi_valid >= 8) {
1181 put_byte(s, (Byte)s->bi_buf);
1182 s->bi_buf >>= 8;
1183 s->bi_valid -= 8;
1184 }
1185 }
1186
1187 /* ===========================================================================
1188 * Flush the bit buffer and align the output on a byte boundary
1189 */
1190 local void bi_windup(s)
1191 deflate_state *s;
1192 {
1193 if (s->bi_valid > 8) {
1194 put_short(s, s->bi_buf);
1195 } else if (s->bi_valid > 0) {
1196 put_byte(s, (Byte)s->bi_buf);
1197 }
1198 s->bi_buf = 0;
1199 s->bi_valid = 0;
1200 #ifdef ZLIB_DEBUG
1201 s->bits_sent = (s->bits_sent+7) & ~7;
1202 #endif
1203 }