diff shaders/ntsc.f.glsl @ 2329:06d5e9b08bdb

Add NTSC composite shader by Sik
author Michael Pavone <pavone@retrodev.com>
date Wed, 23 Aug 2023 21:38:39 -0700
parents
children 49bd818ec9d8
line wrap: on
line diff
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/shaders/ntsc.f.glsl	Wed Aug 23 21:38:39 2023 -0700
@@ -0,0 +1,150 @@
+//******************************************************************************
+// NTSC composite simulator for BlastEm
+// Shader by Sik, based on BlastEm's default shader
+//
+// It works by converting from RGB to YIQ and then encoding it into NTSC, then
+// trying to decode it back. The lossy nature of the encoding process results in
+// the rainbow effect. It also accounts for the differences between H40 and H32
+// mode as it computes the exact colorburst cycle length.
+//
+// This shader tries to work around the inability to keep track of previous
+// pixels by sampling seven points (in 0.25 colorburst cycle intervals), that
+// seems to be enough to give decent filtering (four samples are used for
+// low-pass filtering, but we need seven because decoding chroma also requires
+// four samples so we're filtering over overlapping samples... just see the
+// comments in the I/Q code to understand).
+//******************************************************************************
+
+uniform mediump float width;
+uniform sampler2D textures[2];
+uniform mediump vec2 texsize;
+varying mediump vec2 texcoord;
+
+// Converts from RGB to YIQ
+mediump vec3 rgba2yiq(vec4 rgba)
+{
+	return vec3(
+		rgba[0] * 0.3 + rgba[1] * 0.59 + rgba[2] * 0.11,
+		rgba[0] * 0.599 + rgba[1] * -0.2773 + rgba[2] * -0.3217,
+		rgba[0] * 0.213 + rgba[1] * -0.5251 + rgba[2] * 0.3121
+	);
+}
+
+// Encodes YIQ into composite
+mediump float yiq2raw(vec3 yiq, float phase)
+{
+	return yiq[0] + yiq[1] * sin(phase) + yiq[2] * cos(phase);
+}
+
+// Converts from YIQ to RGB
+mediump vec4 yiq2rgba(vec3 yiq)
+{
+	return vec4(
+		yiq[0] + yiq[1] * 0.9469 + yiq[2] * 0.6236,
+		yiq[0] - yiq[1] * 0.2748 - yiq[2] * 0.6357,
+		yiq[0] - yiq[1] * 1.1 + yiq[2] * 1.7,
+		1.0
+	);
+}
+
+void main()
+{
+	// Use first pair of lines for hard line edges
+	// Use second pair of lines for soft line edges
+	mediump float modifiedY0 = (floor(texcoord.y * texsize.y + 0.25) + 0.5) / texsize.y;
+	mediump float modifiedY1 = (floor(texcoord.y * texsize.y - 0.25) + 0.5) / texsize.y;
+	//mediump float modifiedY0 = (texcoord.y * texsize.y + 0.75) / texsize.y;
+	//mediump float modifiedY1 = (texcoord.y * texsize.y + 0.25) / texsize.y;
+	
+	// Used by the mixing when fetching texels, related to the way BlastEm
+	// handles interlaced mode (nothing to do with composite)
+	mediump float factorY = (sin(texcoord.y * texsize.y * 6.283185307) + 1.0) * 0.5;
+	
+	// Horizontal distance of half a colorburst cycle
+	mediump float factorX = (1.0 / texsize.x) / 170.667 * 0.5 * (width - 27.0);
+	
+	// Where we store the sampled pixels.
+	// [0] = current pixel
+	// [1] = 1/4 colorburst cycles earlier
+	// [2] = 2/4 colorburst cycles earlier
+	// [3] = 3/4 colorburst cycles earlier
+	// [4] = 1 colorburst cycle earlier
+	// [5] = 1 1/4 colorburst cycles earlier
+	// [6] = 1 2/4 colorburst cycles earlier
+	mediump float phase[7];		// Colorburst phase (in radians)
+	mediump float raw[7];		// Raw encoded composite signal
+	
+	// Sample all the pixels we're going to use
+	mediump float x = texcoord.x;
+	for (int n = 0; n < 7; n++, x -= factorX * 0.5) {
+		// Compute colorburst phase at this point
+		phase[n] = x / factorX * 3.1415926;
+		
+		// Decode RGB into YIQ and then into composite
+		// Reading two textures is a BlastEm thing :P (the two fields in
+		// interlaced mode, that's taken as-is from the stock shaders)
+		raw[n] = yiq2raw(mix(
+			rgba2yiq(texture2D(textures[1], vec2(x, modifiedY1))),
+			rgba2yiq(texture2D(textures[0], vec2(x, modifiedY0))),
+			factorY
+		), phase[n]);
+	}
+	
+	// Decode Y by averaging over the the whole sampled cycle (effectively
+	// filtering anything above the colorburst frequency)
+	mediump float y_mix = (raw[0] + raw[1] + raw[2] + raw[3]) * 0.25;
+	
+	// Decode I and Q (see page below to understand what's going on)
+	// https://codeandlife.com/2012/10/09/composite-video-decoding-theory-and-practice/
+	//
+	// Retrieving I and Q out of the raw signal is done like this
+	// (use sin for I and cos for Q):
+	//
+	//    0.5 * raw[0] * sin(phase[0]) + 0.5 * raw[1] * sin(phase[1]) +
+	//    0.5 * raw[2] * sin(phase[2]) + 0.5 * raw[3] * sin(phase[3])
+	//
+	// i.e. multiply each of the sampled quarter cycles against the reference
+	// wave and average them (actually double that because for some reason
+	// that's needed to get the correct scale, hence 0.5 instead of 0.25)
+	//
+	// That turns out to be blocky tho, so we opt to filter down the chroma...
+	// which requires doing the above *four* times if we do it the same way as
+	// we did for luminance (note that 0.125 = 1/4 of 0.5):
+	//
+	//    0.125 * raw[0] * sin(phase[0]) + 0.125 * raw[1] * sin(phase[1]) +
+	//    0.125 * raw[2] * sin(phase[2]) + 0.125 * raw[3] * sin(phase[3]) +
+	//    0.125 * raw[1] * sin(phase[1]) + 0.125 * raw[2] * sin(phase[2]) +
+	//    0.125 * raw[3] * sin(phase[3]) + 0.125 * raw[4] * sin(phase[4]) +
+	//    0.125 * raw[2] * sin(phase[2]) + 0.125 * raw[3] * sin(phase[3]) +
+	//    0.125 * raw[4] * sin(phase[4]) + 0.125 * raw[5] * sin(phase[5]) +
+	//    0.125 * raw[3] * sin(phase[3]) + 0.125 * raw[4] * sin(phase[4]) +
+	//    0.125 * raw[5] * sin(phase[5]) + 0.125 * raw[6] * sin(phase[6])
+	//
+	// There are a lot of repeated values there that could be merged into one,
+	// what you see below is the resulting simplification.
+	
+	mediump float i_mix =
+		0.125 * raw[0] * sin(phase[0]) +
+		0.25  * raw[1] * sin(phase[1]) +
+		0.375 * raw[2] * sin(phase[2]) +
+		0.5   * raw[3] * sin(phase[3]) +
+		0.375 * raw[4] * sin(phase[4]) +
+		0.25  * raw[5] * sin(phase[5]) +
+		0.125 * raw[6] * sin(phase[6]);
+	
+	mediump float q_mix =
+		0.125 * raw[0] * cos(phase[0]) +
+		0.25  * raw[1] * cos(phase[1]) +
+		0.375 * raw[2] * cos(phase[2]) +
+		0.5   * raw[3] * cos(phase[3]) +
+		0.375 * raw[4] * cos(phase[4]) +
+		0.25  * raw[5] * cos(phase[5]) +
+		0.125 * raw[6] * cos(phase[6]);
+	
+	// Convert YIQ back to RGB and output it
+	gl_FragColor = yiq2rgba(vec3(y_mix, i_mix, q_mix));
+	
+	// If you're curious to see what the raw composite signal looks like,
+	// comment out the above and uncomment the line below instead
+	//gl_FragColor = vec4(raw[0], raw[0], raw[0], 1.0);
+}