view tern.c @ 1483:001120e91fed nuklear_ui

Skip loading menu ROM if Nuklear UI is enabled. Allow disabling Nuklear UI in favor of old menu ROM both at compile time and in config. Fall back to ROM UI if GL is unavailable
author Michael Pavone <pavone@retrodev.com>
date Sat, 25 Nov 2017 20:43:20 -0800
parents 071e761bcdcf
children e890971f3757
line wrap: on
line source

/*
 Copyright 2013 Michael Pavone
 This file is part of BlastEm.
 BlastEm is free software distributed under the terms of the GNU General Public License version 3 or greater. See COPYING for full license text.
*/
#include "tern.h"
#include <stddef.h>
#include <stdlib.h>
#include <string.h>
#include <stdio.h>
#include "util.h"

tern_node * tern_insert(tern_node * head, char const * key, tern_val value, uint8_t valtype)
{
	tern_node ** cur = &head;
	while(*key)
	{
		if (*cur) {
			while(*cur && (*cur)->el != *key)
			{
				if (*key < (*cur)->el) {
					cur = &(*cur)->left;
				} else {
					cur = &(*cur)->right;
				}
			}
		}
		if (!*cur) {
			*cur = malloc(sizeof(tern_node));
			(*cur)->left = NULL;
			(*cur)->right = NULL;
			(*cur)->straight.next = NULL;
			(*cur)->el = *key;
			(*cur)->valtype = TVAL_NONE;
		}
		cur = &((*cur)->straight.next);
		key++;
	}
	while(*cur && (*cur)->el)
	{
		cur = &(*cur)->left;
	}
	if (!*cur) {
		*cur = malloc(sizeof(tern_node));
		(*cur)->left = NULL;
		(*cur)->right = NULL;
		(*cur)->el = 0;
	}
	(*cur)->straight.value = value;
	(*cur)->valtype = valtype;
	return head;
}

uint8_t tern_find(tern_node * head, char const * key, tern_val *ret)
{
	tern_node * cur = head;
	while (cur)
	{
		if (cur->el == *key) {
			if (*key) {
				cur = cur->straight.next;
				key++;
			} else {
				*ret = cur->straight.value;
				return cur->valtype;
			}
		} else if (*key < cur->el) {
			cur = cur->left;
		} else {
			cur = cur->right;
		}
	}
	return TVAL_NONE;
}

tern_node * tern_find_prefix(tern_node * head, char const * key)
{
	tern_node * cur = head;
	while (cur && *key)
	{
		if (cur->el == *key) {
			cur = cur->straight.next;
			key++;
		} else if (*key < cur->el) {
			cur = cur->left;
		} else {
			cur = cur->right;
		}
	}
	return cur;
}

intptr_t tern_find_int(tern_node * head, char const * key, intptr_t def)
{
	tern_val ret;
	uint8_t valtype = tern_find(head, key, &ret);
	if (valtype == TVAL_INT) {
		return ret.intval;
	}
	return def;
}

tern_node * tern_insert_int(tern_node * head, char const * key, intptr_t value)
{
	tern_val val;
	val.intval = value;
	return tern_insert(head, key, val, TVAL_INT);
}

void * tern_find_ptr_default(tern_node * head, char const * key, void * def)
{
	tern_val ret;
	uint8_t valtype = tern_find(head, key, &ret);
	if (valtype == TVAL_PTR) {
		return ret.ptrval;
	}
	return def;
}

void * tern_find_ptr(tern_node * head, char const * key)
{
	return tern_find_ptr_default(head, key, NULL);
}

tern_node *tern_find_node(tern_node *head, char const *key)
{
	tern_val ret;
	uint8_t valtype = tern_find(head, key, &ret);
	if (valtype == TVAL_NODE) {
		return ret.ptrval;
	}
	return NULL;
}

tern_val tern_find_path_default(tern_node *head, char const *key, tern_val def, uint8_t req_valtype)
{
	tern_val ret;
	while (*key)
	{
		uint8_t valtype = tern_find(head, key, &ret);
		if (!valtype) {
			return def;
		}
		key = key + strlen(key) + 1;
		if (*key) {
			if (valtype != TVAL_NODE) {
				return def;
			}
			head = ret.ptrval;
		} else if (req_valtype && req_valtype != valtype) {
			return def;
		}
	}
	return ret;
}

tern_val tern_find_path(tern_node *head, char const *key, uint8_t valtype)
{
	tern_val def;
	def.ptrval = NULL;
	return tern_find_path_default(head, key, def, valtype);
}

tern_node * tern_insert_ptr(tern_node * head, char const * key, void * value)
{
	tern_val val;
	val.ptrval = value;
	return tern_insert(head, key, val, TVAL_PTR);
}

tern_node * tern_insert_node(tern_node *head, char const *key, tern_node *value)
{
	tern_val val;
	val.ptrval = value;
	return tern_insert(head, key, val, TVAL_NODE);
}

uint32_t tern_count(tern_node *head)
{
	uint32_t count = 0;
	if (head->left) {
		count += tern_count(head->left);
	}
	if (head->right) {
		count += tern_count(head->right);
	}
	if (!head->el) {
		count++;
	} else if (head->straight.next) {
		count += tern_count(head->straight.next);
	}
	return count;
}

#define MAX_ITER_KEY 127
void tern_foreach_int(tern_node *head, iter_fun fun, void *data, char *keybuf, int pos)
{
	if (!head->el) {
		keybuf[pos] = 0;
		fun(keybuf, head->straight.value, head->valtype, data);
	}
	if (head->left) {
		tern_foreach_int(head->left, fun, data, keybuf, pos);
	}
	if (head->el) {
		if (pos == MAX_ITER_KEY) {
			fatal_error("tern_foreach_int: exceeded maximum key size");
		}
		keybuf[pos] = head->el;
		tern_foreach_int(head->straight.next, fun, data, keybuf, pos+1);
	}
	if (head->right) {
		tern_foreach_int(head->right, fun, data, keybuf, pos);
	}
}

void tern_foreach(tern_node *head, iter_fun fun, void *data)
{
	//lame, but good enough for my purposes
	char key[MAX_ITER_KEY+1];
	tern_foreach_int(head, fun, data, key, 0);
}

char * tern_int_key(uint32_t key, char * buf)
{
	char * cur = buf;
	while (key)
	{
		*(cur++) = (key & 0x7F) + 1;
		key >>= 7;
	}
	*cur = 0;
	return buf;
}

void tern_free(tern_node *head)
{
	if (head->left) {
		tern_free(head->left);
	}
	if (head->right) {
		tern_free(head->right);
	}
	if (head->el) {
		tern_free(head->straight.next);
	}
	free(head);
}