view vdp.c @ 380:1c8d74f2ab0b

Make the PSG and YM2612 use the master clock internal with an increment based on clock divider so that they stay perflectly in sync. Run both the PSG and YM2612 whenver one of them needs to be run.
author Mike Pavone <pavone@retrodev.com>
date Mon, 03 Jun 2013 21:43:38 -0700
parents f8c6f8684cd6
children 36fbbced25c2
line wrap: on
line source

#include "vdp.h"
#include "blastem.h"
#include <stdlib.h>
#include <string.h>

#define NTSC_ACTIVE 225
#define PAL_ACTIVE 241
#define BUF_BIT_PRIORITY 0x40
#define MAP_BIT_PRIORITY 0x8000
#define MAP_BIT_H_FLIP 0x800
#define MAP_BIT_V_FLIP 0x1000

//Mode reg 1
#define BIT_HINT_EN    0x10
#define BIT_PAL_SEL    0x04
#define BIT_HVC_LATCH  0x02
#define BIT_DISP_DIS   0x01

//Mode reg 2
#define BIT_DISP_EN    0x40
#define BIT_VINT_EN    0x20
#define BIT_DMA_ENABLE 0x10
#define BIT_PAL        0x08
#define BIT_MODE_5     0x04

//Mode reg 3
#define BIT_EINT_EN    0x10
#define BIT_VSCROLL    0x04

//Mode reg 4
#define BIT_H40        0x01
#define BIT_HILIGHT    0x8

#define SCROLL_BUFFER_SIZE 32
#define SCROLL_BUFFER_DRAW 16

#define FIFO_SIZE 4

#define MCLKS_SLOT_H40  16
#define MCLKS_SLOT_H32  20
#define VINT_CYCLE_H40  (21*MCLKS_SLOT_H40+332+9*MCLKS_SLOT_H40) //21 slots before HSYNC, 16 during, 10 after
#define VINT_CYCLE_H32  ((33+20+7)*MCLKS_SLOT_H32)  //33 slots before HSYNC, 20 during, 7 after  TODO: confirm final number
#define HSYNC_SLOT_H40  21
#define MCLK_WEIRD_END  (HSYNC_SLOT_H40*MCLKS_SLOT_H40 + 332)
#define SLOT_WEIRD_END  (HSYNC_SLOT_H40+17)
#define HSYNC_END_H32   (33 * MCLKS_SLOT_H32)
#define HBLANK_CLEAR_H40 (MCLK_WEIRD_END+61*4)
#define HBLANK_CLEAR_H32 (HSYNC_END_H32 + 46*5)

void init_vdp_context(vdp_context * context)
{
	memset(context, 0, sizeof(*context));
	context->vdpmem = malloc(VRAM_SIZE);
	memset(context->vdpmem, 0, VRAM_SIZE);
	context->framebuf = malloc(FRAMEBUF_SIZE);
	memset(context->framebuf, 0, FRAMEBUF_SIZE);
	context->linebuf = malloc(LINEBUF_SIZE + SCROLL_BUFFER_SIZE*2);
	memset(context->linebuf, 0, LINEBUF_SIZE + SCROLL_BUFFER_SIZE*2);
	context->tmp_buf_a = context->linebuf + LINEBUF_SIZE;
	context->tmp_buf_b = context->tmp_buf_a + SCROLL_BUFFER_SIZE;
	context->sprite_draws = MAX_DRAWS;
	context->fifo_cur = malloc(sizeof(fifo_entry) * FIFO_SIZE);
	context->fifo_end = context->fifo_cur + FIFO_SIZE;
}

void render_sprite_cells(vdp_context * context)
{
	if (context->cur_slot >= context->sprite_draws) {
		sprite_draw * d = context->sprite_draw_list + context->cur_slot;
		
		uint16_t dir;
		int16_t x;
		if (d->h_flip) {
			x = d->x_pos + 7;
			dir = -1;
		} else {
			x = d->x_pos;
			dir = 1;
		}
		//printf("Draw Slot %d of %d, Rendering sprite cell from %X to x: %d\n", context->cur_slot, context->sprite_draws, d->address, x);
		context->cur_slot--;
		for (uint16_t address = d->address; address != ((d->address+4) & 0xFFFF); address++) {
			if (x >= 0 && x < 320 && !(context->linebuf[x] & 0xF)) {
				context->linebuf[x] = (context->vdpmem[address] >> 4) | d->pal_priority;
			}
			x += dir;
			if (x >= 0 && x < 320 && !(context->linebuf[x] & 0xF)) {
				context->linebuf[x] = (context->vdpmem[address] & 0xF)  | d->pal_priority;
			}
			x += dir;
		}
	}
}

void vdp_print_sprite_table(vdp_context * context)
{
	uint16_t sat_address = (context->regs[REG_SAT] & 0x7F) << 9;
	uint16_t current_index = 0;
	uint8_t count = 0;
	do {
		uint16_t address = current_index * 8 + sat_address;
		uint8_t height = ((context->vdpmem[address+2] & 0x3) + 1) * 8;
		uint8_t width = (((context->vdpmem[address+2]  >> 2) & 0x3) + 1) * 8;
		int16_t y = ((context->vdpmem[address] & 0x3) << 8 | context->vdpmem[address+1]) & 0x1FF;
		int16_t x = ((context->vdpmem[address+ 6] & 0x3) << 8 | context->vdpmem[address + 7]) & 0x1FF;
		uint16_t link = context->vdpmem[address+3] & 0x7F;
		uint8_t pal = context->vdpmem[address + 4] >> 5 & 0x3;
		uint8_t pri = context->vdpmem[address + 4] >> 7;
		uint16_t pattern = ((context->vdpmem[address + 4] << 8 | context->vdpmem[address + 5]) & 0x7FF) << 5;	
		//printf("Sprite %d: X=%d(%d), Y=%d(%d), Width=%u, Height=%u, Link=%u, Pal=%u, Pri=%u, Pat=%X\n", current_index, x, x-128, y, y-128, width, height, link, pal, pri, pattern);
		current_index = link;
		count++;
	} while (current_index != 0 && count < 80);
}

void vdp_print_reg_explain(vdp_context * context)
{
	char * hscroll[] = {"full", "7-line", "cell", "line"};
	printf("**Mode Group**\n"
	       "00: %.2X | H-ints %s, Pal Select %d, HVC latch %s, Display gen %s\n"
	       "01: %.2X | Display %s, V-ints %s, Height: %d, Mode %d\n"
	       "0B: %.2X | E-ints %s, V-Scroll: %s, H-Scroll: %s\n"
	       "0C: %.2X | Width: %d, Shadow/Highlight: %s\n",
	       context->regs[REG_MODE_1], context->regs[REG_MODE_1] & BIT_HINT_EN ? "enabled" : "disabled", context->regs[REG_MODE_1] & BIT_PAL_SEL != 0, 
	           context->regs[REG_MODE_1] & BIT_HVC_LATCH ? "enabled" : "disabled", context->regs[REG_MODE_1] & BIT_DISP_DIS ? "disabled" : "enabled",
	       context->regs[REG_MODE_2], context->regs[REG_MODE_2] & BIT_DISP_EN ? "enabled" : "disabled", context->regs[REG_MODE_2] & BIT_VINT_EN ? "enabled" : "disabled", 
	           context->regs[REG_MODE_2] & BIT_PAL ? 30 : 28, context->regs[REG_MODE_2] & BIT_MODE_5 ? 5 : 4,
	       context->regs[REG_MODE_3], context->regs[REG_MODE_3] & BIT_EINT_EN ? "enabled" : "disabled", context->regs[REG_MODE_3] & BIT_VSCROLL ? "2 cell" : "full",
	           hscroll[context->regs[REG_MODE_3] & 0x3],
	       context->regs[REG_MODE_4], context->regs[REG_MODE_4] & BIT_H40 ? 40 : 32, context->regs[REG_MODE_4] & BIT_HILIGHT ? "enabled" : "disabled");
	printf("\n**Table Group**\n"
	       "02: %.2X | Scroll A Name Table:    $%.4X\n"
	       "03: %.2X | Window Name Table:      $%.4X\n"
	       "04: %.2X | Scroll B Name Table:    $%.4X\n"
	       "05: %.2X | Sprite Attribute Table: $%.4X\n"
	       "0D: %.2X | HScroll Data Table:     $%.4X\n",
	       context->regs[REG_SCROLL_A], (context->regs[REG_SCROLL_A] & 0x38) << 10,
	       context->regs[REG_WINDOW], (context->regs[REG_WINDOW] & (context->regs[REG_MODE_4] & BIT_H40 ? 0x3C : 0x3E)) << 10,
	       context->regs[REG_SCROLL_B], (context->regs[REG_SCROLL_B] & 0x7) << 13,
	       context->regs[REG_SAT], (context->regs[REG_SAT] & (context->regs[REG_MODE_4] & BIT_H40 ? 0x3E : 0x3F)) << 9,
	       context->regs[REG_HSCROLL], (context->regs[REG_HSCROLL] & 0x1F) << 10);
	char * sizes[] = {"32", "64", "invalid", "128"};
	printf("\n**Misc Group**\n"
	       "07: %.2X | Backdrop Color: $%X\n"
	       "0A: %.2X | H-Int Counter: %u\n"
	       "0F: %.2X | Auto-increment: $%X\n"
	       "10: %.2X | Scroll A/B Size: %sx%s\n",
	       context->regs[REG_BG_COLOR], context->regs[REG_BG_COLOR] & 0x3F, 
	       context->regs[REG_HINT], context->regs[REG_HINT], 
	       context->regs[REG_AUTOINC], context->regs[REG_AUTOINC],
	       context->regs[REG_SCROLL], sizes[context->regs[REG_SCROLL] & 0x3], sizes[context->regs[REG_SCROLL] >> 4 & 0x3]);
	       
	//TODO: Window Group, DMA Group      
}

void scan_sprite_table(uint32_t line, vdp_context * context)
{
	if (context->sprite_index && context->slot_counter) {
		line += 1;
		line &= 0xFF;
		context->sprite_index &= 0x7F;
		if (context->latched_mode & BIT_H40) {
			if (context->sprite_index >= MAX_SPRITES_FRAME) {
				context->sprite_index = 0;
				return;
			}
		} else if(context->sprite_index >= MAX_SPRITES_FRAME_H32) {
			context->sprite_index = 0;
			return;
		}
		//TODO: Read from SAT cache rather than from VRAM
		uint16_t sat_address = (context->regs[REG_SAT] & 0x7F) << 9;
		uint16_t address = context->sprite_index * 8 + sat_address;
		line += 128;
		uint16_t y = ((context->vdpmem[address] & 0x3) << 8 | context->vdpmem[address+1]) & 0x1FF;
		uint8_t height = ((context->vdpmem[address+2] & 0x3) + 1) * 8;
		//printf("Sprite %d | y: %d, height: %d\n", context->sprite_index, y, height);
		if (y <= line && line < (y + height)) {
			//printf("Sprite %d at y: %d with height %d is on line %d\n", context->sprite_index, y, height, line);
			context->sprite_info_list[--(context->slot_counter)].size = context->vdpmem[address+2];
			context->sprite_info_list[context->slot_counter].index = context->sprite_index;
			context->sprite_info_list[context->slot_counter].y = y-128;
		}
		context->sprite_index = context->vdpmem[address+3] & 0x7F;
		if (context->sprite_index && context->slot_counter)
		{
			address = context->sprite_index * 8 + sat_address;
			y = ((context->vdpmem[address] & 0x3) << 8 | context->vdpmem[address+1]) & 0x1FF;
			height = ((context->vdpmem[address+2] & 0x3) + 1) * 8;
			//printf("Sprite %d | y: %d, height: %d\n", context->sprite_index, y, height);
			if (y <= line && line < (y + height)) {
				//printf("Sprite %d at y: %d with height %d is on line %d\n", context->sprite_index, y, height, line);
				context->sprite_info_list[--(context->slot_counter)].size = context->vdpmem[address+2];
				context->sprite_info_list[context->slot_counter].index = context->sprite_index;
				context->sprite_info_list[context->slot_counter].y = y-128;
			}
			context->sprite_index = context->vdpmem[address+3] & 0x7F;
		}
	}
}

void read_sprite_x(uint32_t line, vdp_context * context)
{
	if (context->cur_slot >= context->slot_counter) {
		if (context->sprite_draws) {
			line += 1;
			line &= 0xFF;
			//in tiles
			uint8_t width = ((context->sprite_info_list[context->cur_slot].size >> 2) & 0x3) + 1;
			//in pixels
			uint8_t height = ((context->sprite_info_list[context->cur_slot].size & 0x3) + 1) * 8;
			uint16_t att_addr = ((context->regs[REG_SAT] & 0x7F) << 9) + context->sprite_info_list[context->cur_slot].index * 8 + 4;
			uint16_t tileinfo = (context->vdpmem[att_addr] << 8) | context->vdpmem[att_addr+1];		
			uint8_t pal_priority = (tileinfo >> 9) & 0x70;
			uint8_t row;
			if (tileinfo & MAP_BIT_V_FLIP) {
				row = (context->sprite_info_list[context->cur_slot].y + height - 1) - line;
			} else {
				row = line-context->sprite_info_list[context->cur_slot].y;
			}
			uint16_t address = ((tileinfo & 0x7FF) << 5) + row * 4;
			int16_t x = ((context->vdpmem[att_addr+ 2] & 0x3) << 8 | context->vdpmem[att_addr + 3]) & 0x1FF;
			if (x) {
				context->flags |= FLAG_CAN_MASK;
			} else if(context->flags & (FLAG_CAN_MASK | FLAG_DOT_OFLOW)) {
				context->flags |= FLAG_MASKED;
			}
			
			context->flags &= ~FLAG_DOT_OFLOW;
			int16_t i;
			if (context->flags & FLAG_MASKED) {
				for (i=0; i < width && context->sprite_draws; i++) {
					--context->sprite_draws;
					context->sprite_draw_list[context->sprite_draws].x_pos = -128;
				}
			} else {
				x -= 128;
				int16_t base_x = x;
				int16_t dir;
				if (tileinfo & MAP_BIT_H_FLIP) {
					x += (width-1) * 8;
					dir = -8;
				} else {
					dir = 8;
				}
				//printf("Sprite %d | x: %d, y: %d, width: %d, height: %d, pal_priority: %X, row: %d, tile addr: %X\n", context->sprite_info_list[context->cur_slot].index, x, context->sprite_info_list[context->cur_slot].y, width, height, pal_priority, row, address);
				for (i=0; i < width && context->sprite_draws; i++, x += dir) {
					--context->sprite_draws;
					context->sprite_draw_list[context->sprite_draws].address = address + i * height * 4;
					context->sprite_draw_list[context->sprite_draws].x_pos = x;
					context->sprite_draw_list[context->sprite_draws].pal_priority = pal_priority;
					context->sprite_draw_list[context->sprite_draws].h_flip = (tileinfo & MAP_BIT_H_FLIP) ? 1 : 0;
				}
			}
			if (i < width) {
				context->flags |= FLAG_DOT_OFLOW;
			}
			context->cur_slot--;
		} else {
			context->flags |= FLAG_DOT_OFLOW;
		}
	}
}

#define VRAM_READ 0
#define VRAM_WRITE 1
#define CRAM_READ 8
#define CRAM_WRITE 3
#define VSRAM_READ 4
#define VSRAM_WRITE 5
#define DMA_START 0x20

void external_slot(vdp_context * context)
{
	//TODO: Figure out what happens if CD bit 4 is not set in DMA copy mode
	//TODO: Figure out what happens when CD:0-3 is not set to a write mode in DMA operations
	//TODO: Figure out what happens if DMA gets disabled part way through a DMA fill or DMA copy
	if(context->flags & FLAG_DMA_RUN) {
		uint16_t dma_len;
		switch(context->regs[REG_DMASRC_H] & 0xC0)
		{
		//68K -> VDP
		case 0:
		case 0x40:
			switch(context->dma_cd & 0xF)
			{
			case VRAM_WRITE:
				if (context->flags & FLAG_DMA_PROG) {
					context->vdpmem[context->address ^ 1] = context->dma_val;
					context->flags &= ~FLAG_DMA_PROG;
				} else {
					context->dma_val = read_dma_value((context->regs[REG_DMASRC_H] << 16) | (context->regs[REG_DMASRC_M] << 8) | context->regs[REG_DMASRC_L]);
					context->vdpmem[context->address] = context->dma_val >> 8;
					context->flags |= FLAG_DMA_PROG;
				}
				break;
			case CRAM_WRITE:
				context->cram[(context->address/2) & (CRAM_SIZE-1)] = read_dma_value((context->regs[REG_DMASRC_H] << 16) | (context->regs[REG_DMASRC_M] << 8) | context->regs[REG_DMASRC_L]);
				//printf("CRAM DMA | %X set to %X from %X at %d\n", (context->address/2) & (CRAM_SIZE-1), context->cram[(context->address/2) & (CRAM_SIZE-1)], (context->regs[REG_DMASRC_H] << 17) | (context->regs[REG_DMASRC_M] << 9) | (context->regs[REG_DMASRC_L] << 1), context->cycles);
				break;
			case VSRAM_WRITE:
				if (((context->address/2) & 63) < VSRAM_SIZE) {
					context->vsram[(context->address/2) & 63] = read_dma_value((context->regs[REG_DMASRC_H] << 16) | (context->regs[REG_DMASRC_M] << 8) | context->regs[REG_DMASRC_L]);
				}
				break;
			}
			break;
		//Fill
		case 0x80:
			switch(context->dma_cd & 0xF)
			{
			case VRAM_WRITE:
				//Charles MacDonald's VDP doc says that the low byte gets written first
				context->vdpmem[context->address] = context->dma_val;
				context->dma_val = (context->dma_val << 8) | ((context->dma_val >> 8) & 0xFF);
				break;
			case CRAM_WRITE:
				context->cram[(context->address/2) & (CRAM_SIZE-1)] = context->dma_val;
				//printf("CRAM DMA Fill | %X set to %X at %d\n", (context->address/2) & (CRAM_SIZE-1), context->cram[(context->address/2) & (CRAM_SIZE-1)], context->cycles);
				break;
			case VSRAM_WRITE:
				if (((context->address/2) & 63) < VSRAM_SIZE) {
					context->vsram[(context->address/2) & 63] = context->dma_val;
				}
				break;
			}
			break;
		//Copy
		case 0xC0:
			if (context->flags & FLAG_DMA_PROG) {
				switch(context->dma_cd & 0xF)
				{
				case VRAM_WRITE:
					context->vdpmem[context->address] = context->dma_val;
					break;
				case CRAM_WRITE:
					context->cram[(context->address/2) & (CRAM_SIZE-1)] = context->dma_val;
					//printf("CRAM DMA Copy | %X set to %X from %X at %d\n", (context->address/2) & (CRAM_SIZE-1), context->cram[(context->address/2) & (CRAM_SIZE-1)], context->regs[REG_DMASRC_L] & (CRAM_SIZE-1), context->cycles);
					break;
				case VSRAM_WRITE:
					if (((context->address/2) & 63) < VSRAM_SIZE) {
						context->vsram[(context->address/2) & 63] = context->dma_val;
					}
					break;
				}
				context->flags &= ~FLAG_DMA_PROG;
			} else {
				//I assume, that DMA copy copies from the same RAM as the destination
				//but it's possible I'm mistaken
				switch(context->dma_cd & 0xF)
				{
				case VRAM_WRITE:
					context->dma_val = context->vdpmem[(context->regs[REG_DMASRC_M] << 8) | context->regs[REG_DMASRC_L]];
					break;
				case CRAM_WRITE:
					context->dma_val = context->cram[context->regs[REG_DMASRC_L] & (CRAM_SIZE-1)];
					break;
				case VSRAM_WRITE:
					if ((context->regs[REG_DMASRC_L] & 63) < VSRAM_SIZE) {
						context->dma_val = context->vsram[context->regs[REG_DMASRC_L] & 63];
					} else {
						context->dma_val = 0;
					}
					break;
				}
				context->flags |= FLAG_DMA_PROG;
			}
			break;
		}
		if (!(context->flags & FLAG_DMA_PROG)) {
			context->address += context->regs[REG_AUTOINC];
			context->regs[REG_DMASRC_L] += 1;
			if (!context->regs[REG_DMASRC_L]) {
				context->regs[REG_DMASRC_M] += 1;
			}
			dma_len = ((context->regs[REG_DMALEN_H] << 8) | context->regs[REG_DMALEN_L]) - 1;
			context->regs[REG_DMALEN_H] = dma_len >> 8;
			context->regs[REG_DMALEN_L] = dma_len;
			if (!dma_len) {
				context->flags &= ~FLAG_DMA_RUN;
			}
		}
	} else {
		fifo_entry * start = (context->fifo_end - FIFO_SIZE);
		if (context->fifo_cur != start && start->cycle <= context->cycles) {
			if ((context->regs[REG_MODE_2] & BIT_DMA_ENABLE) && (context->cd & DMA_START)) {
				context->flags |= FLAG_DMA_RUN;
				context->dma_val = start->value;
				context->address = start->address; //undo auto-increment
				context->dma_cd = context->cd;
			} else {
				switch (start->cd & 0xF)
				{
				case VRAM_WRITE:
					if (start->partial) {
						//printf("VRAM Write: %X to %X\n", start->value, context->address ^ 1);
						context->vdpmem[start->address ^ 1] = start->value;
					} else {
						//printf("VRAM Write High: %X to %X\n", start->value >> 8, context->address);
						context->vdpmem[start->address] = start->value >> 8;
						start->partial = 1;
						//skip auto-increment and removal of entry from fifo
						return;
					}
					break;
				case CRAM_WRITE:
					//printf("CRAM Write | %X to %X\n", start->value, (start->address/2) & (CRAM_SIZE-1));
					context->cram[(start->address/2) & (CRAM_SIZE-1)] = start->value;
					break;
				case VSRAM_WRITE:
					if (((start->address/2) & 63) < VSRAM_SIZE) {
						//printf("VSRAM Write: %X to %X\n", start->value, context->address);
						context->vsram[(start->address/2) & 63] = start->value;
					}
					break;
				}
				//context->address += context->regs[REG_AUTOINC];
			}
			fifo_entry * cur = start+1;
			if (cur < context->fifo_cur) {
				memmove(start, cur, sizeof(fifo_entry) * (context->fifo_cur - cur));
			}
			context->fifo_cur -= 1;
		} else {
			context->flags |= FLAG_UNUSED_SLOT;
		}
	}
}

#define WINDOW_RIGHT 0x80
#define WINDOW_DOWN  0x80

void read_map_scroll(uint16_t column, uint16_t vsram_off, uint32_t line, uint16_t address, uint16_t hscroll_val, vdp_context * context)
{
	if (!vsram_off) {
		uint16_t left_col, right_col;
		if (context->regs[REG_WINDOW_H] & WINDOW_RIGHT) {
			left_col = (context->regs[REG_WINDOW_H] & 0x1F) * 2;
			right_col = 42;
		} else {
			left_col = 0;
			right_col = (context->regs[REG_WINDOW_H] & 0x1F) * 2;
			if (right_col) {
				right_col += 2;
			}
		}
		uint16_t top_line, bottom_line;
		if (context->regs[REG_WINDOW_V] & WINDOW_DOWN) {
			top_line = (context->regs[REG_WINDOW_V] & 0x1F) * 8;
			bottom_line = 241;
		} else {
			top_line = 0;
			bottom_line = (context->regs[REG_WINDOW_V] & 0x1F) * 8;
		}
		if ((column >= left_col && column < right_col) || (line >= top_line && line < bottom_line)) {
			uint16_t address = context->regs[REG_WINDOW] << 10;
			uint16_t line_offset, offset, mask;
			if (context->latched_mode & BIT_H40) {
				address &= 0xF000;
				line_offset = (((line) / 8) * 64 * 2) & 0xFFF;
				mask = 0x7F;
				
			} else {
				address &= 0xF800;
				line_offset = (((line) / 8) * 32 * 2) & 0xFFF;
				mask = 0x3F;
			}
			offset = address + line_offset + (((column - 2) * 2) & mask);
			context->col_1 = (context->vdpmem[offset] << 8) | context->vdpmem[offset+1];
			//printf("Window | top: %d, bot: %d, left: %d, right: %d, base: %X, line: %X offset: %X, tile: %X, reg: %X\n", top_line, bottom_line, left_col, right_col, address, line_offset, offset, ((context->col_1 & 0x3FF) << 5), context->regs[REG_WINDOW]);
			offset = address + line_offset + (((column - 1) * 2) & mask);
			context->col_2 = (context->vdpmem[offset] << 8) | context->vdpmem[offset+1];
			context->v_offset = (line) & 0x7;
			context->flags |= FLAG_WINDOW;
			return;
		}
		context->flags &= ~FLAG_WINDOW;
	}
	uint16_t vscroll;
	switch(context->regs[REG_SCROLL] & 0x30)
	{
	case 0:
		vscroll = 0xFF;
		break;
	case 0x10:
		vscroll = 0x1FF;
		break;
	case 0x20:
		//TODO: Verify this behavior
		vscroll = 0;
		break;
	case 0x30:
		vscroll = 0x3FF;
		break;
	}
	vscroll &= (context->vsram[(context->regs[REG_MODE_3] & BIT_VSCROLL ? column : 0) + vsram_off] + line);
	context->v_offset = vscroll & 0x7;
	//printf("%s | line %d, vsram: %d, vscroll: %d, v_offset: %d\n",(vsram_off ? "B" : "A"), line, context->vsram[context->regs[REG_MODE_3] & 0x4 ? column : 0], vscroll, context->v_offset);
	vscroll /= 8;
	uint16_t hscroll_mask;
	uint16_t v_mul;
	switch(context->regs[REG_SCROLL] & 0x3)
	{
	case 0:
		hscroll_mask = 0x1F;
		v_mul = 64;
		break;
	case 0x1:
		hscroll_mask = 0x3F;
		v_mul = 128;
		break;
	case 0x2:
		//TODO: Verify this behavior
		hscroll_mask = 0;
		v_mul = 0;
		break;
	case 0x3:
		hscroll_mask = 0x7F;
		v_mul = 256;
		break;
	}
	uint16_t hscroll, offset;
	for (int i = 0; i < 2; i++) {
		hscroll = (column - 2 + i - ((hscroll_val/8) & 0xFFFE)) & hscroll_mask;
		offset = address + ((vscroll * v_mul + hscroll*2) & 0x1FFF);
		//printf("%s | line: %d, col: %d, x: %d, hs_mask %X, scr reg: %X, tbl addr: %X\n", (vsram_off ? "B" : "A"), line, (column-2+i), hscroll, hscroll_mask, context->regs[REG_SCROLL], offset);
		uint16_t col_val = (context->vdpmem[offset] << 8) | context->vdpmem[offset+1];
		if (i) {
			context->col_2 = col_val;
		} else {
			context->col_1 = col_val;
		}
	}
}

void read_map_scroll_a(uint16_t column, uint32_t line, vdp_context * context)
{
	read_map_scroll(column, 0, line, (context->regs[REG_SCROLL_A] & 0x38) << 10, context->hscroll_a, context);
}

void read_map_scroll_b(uint16_t column, uint32_t line, vdp_context * context)
{
	read_map_scroll(column, 1, line, (context->regs[REG_SCROLL_B] & 0x7) << 13, context->hscroll_b, context);
}

void render_map(uint16_t col, uint8_t * tmp_buf, vdp_context * context)
{
	uint16_t address = ((col & 0x7FF) << 5);
	if (col & MAP_BIT_V_FLIP) {
		address +=  28 - 4 * context->v_offset;
	} else {
		address += 4 * context->v_offset;
	}
	uint16_t pal_priority = (col >> 9) & 0x70;
	int32_t dir;
	if (col & MAP_BIT_H_FLIP) {
		tmp_buf += 7;
		dir = -1;
	} else {
		dir = 1;
	}
	for (uint32_t i=0; i < 4; i++, address++)
	{
		*tmp_buf = pal_priority | (context->vdpmem[address] >> 4);
		tmp_buf += dir;
		*tmp_buf = pal_priority | (context->vdpmem[address] & 0xF);
		tmp_buf += dir;
	}
}

void render_map_1(vdp_context * context)
{
	render_map(context->col_1, context->tmp_buf_a+SCROLL_BUFFER_DRAW, context);
}

void render_map_2(vdp_context * context)
{
	render_map(context->col_2, context->tmp_buf_a+SCROLL_BUFFER_DRAW+8, context);
}

void render_map_3(vdp_context * context)
{
	render_map(context->col_1, context->tmp_buf_b+SCROLL_BUFFER_DRAW, context);
}

void render_map_output(uint32_t line, int32_t col, vdp_context * context)
{
	if (line >= 240) {
		return;
	}
	render_map(context->col_2, context->tmp_buf_b+SCROLL_BUFFER_DRAW+8, context);
	uint16_t *dst, *end;
	uint8_t *sprite_buf, *plane_a, *plane_b;
	if (col)
	{
		col-=2;
		dst = context->framebuf + line * 320 + col * 8;
		sprite_buf = context->linebuf + col * 8;
		uint16_t a_src;
		if (context->flags & FLAG_WINDOW) {
			plane_a = context->tmp_buf_a + SCROLL_BUFFER_DRAW;
			a_src = FBUF_SRC_W;
		} else {
			plane_a = context->tmp_buf_a + SCROLL_BUFFER_DRAW - (context->hscroll_a & 0xF);
			a_src = FBUF_SRC_A;
		}
		plane_b = context->tmp_buf_b + SCROLL_BUFFER_DRAW - (context->hscroll_b & 0xF);
		end = dst + 16;
		uint16_t src;
		//printf("A | tmp_buf offset: %d\n", 8 - (context->hscroll_a & 0x7));
		
		if (context->regs[REG_MODE_4] & BIT_HILIGHT) {
			for (; dst < end; ++plane_a, ++plane_b, ++sprite_buf, ++dst) {
				uint8_t pixel;
				
				src = 0;
				uint8_t sprite_color = *sprite_buf & 0x3F;
				if (sprite_color == 0x3E || sprite_color == 0x3F) {
					if (sprite_color == 0x3F) {
						src = FBUF_SHADOW;
					} else {
						src = FBUF_HILIGHT;
					}
					if (*plane_a & BUF_BIT_PRIORITY && *plane_a & 0xF) {
						pixel = *plane_a;
						src |= a_src;
					} else if (*plane_b & BUF_BIT_PRIORITY && *plane_b & 0xF) {
						pixel = *plane_b;
						src |= FBUF_SRC_B;
					} else if (*plane_a & 0xF) {
						pixel = *plane_a;
						src |= a_src;
					} else if (*plane_b & 0xF){
						pixel = *plane_b;
						src |= FBUF_SRC_B;
					} else {
						pixel = context->regs[REG_BG_COLOR] & 0x3F;
						src |= FBUF_SRC_BG;
					}
				} else {
					if (*sprite_buf & BUF_BIT_PRIORITY && *sprite_buf & 0xF) {
						pixel = *sprite_buf;
						src = FBUF_SRC_S;
					} else if (*plane_a & BUF_BIT_PRIORITY && *plane_a & 0xF) {
						pixel = *plane_a;
						src = a_src;
					} else if (*plane_b & BUF_BIT_PRIORITY && *plane_b & 0xF) {
						pixel = *plane_b;
						src = FBUF_SRC_B;
					} else {
						if (!(*plane_a & BUF_BIT_PRIORITY || *plane_a & BUF_BIT_PRIORITY)) {
							src = FBUF_SHADOW;
						}
						if (*sprite_buf & 0xF) {
							pixel = *sprite_buf;
							if (*sprite_buf & 0xF == 0xE) {
								src = FBUF_SRC_S;
							} else {
								src |= FBUF_SRC_S;
							}
						} else if (*plane_a & 0xF) {
							pixel = *plane_a;
							src |= a_src;
						} else if (*plane_b & 0xF){
							pixel = *plane_b;
							src |= FBUF_SRC_B;
						} else {
							pixel = context->regs[REG_BG_COLOR] & 0x3F;
							src |= FBUF_SRC_BG;
						}
					}
				}
				*dst = (context->cram[pixel & 0x3F] & 0xEEE) | ((pixel & BUF_BIT_PRIORITY) ? FBUF_BIT_PRIORITY : 0) | src;
			}
		} else {
			for (; dst < end; ++plane_a, ++plane_b, ++sprite_buf, ++dst) {
				uint8_t pixel;
				if (*sprite_buf & BUF_BIT_PRIORITY && *sprite_buf & 0xF) {
					pixel = *sprite_buf;
					src = FBUF_SRC_S;
				} else if (*plane_a & BUF_BIT_PRIORITY && *plane_a & 0xF) {
					pixel = *plane_a;
					src = a_src;
				} else if (*plane_b & BUF_BIT_PRIORITY && *plane_b & 0xF) {
					pixel = *plane_b;
					src = FBUF_SRC_B;
				} else if (*sprite_buf & 0xF) {
					pixel = *sprite_buf;
					src = FBUF_SRC_S;
				} else if (*plane_a & 0xF) {
					pixel = *plane_a;
					src = a_src;
				} else if (*plane_b & 0xF){
					pixel = *plane_b;
					src = FBUF_SRC_B;
				} else {
					pixel = context->regs[REG_BG_COLOR] & 0x3F;
					src = FBUF_SRC_BG;
				}
				*dst = (context->cram[pixel & 0x3F] & 0xEEE) | ((pixel & BUF_BIT_PRIORITY) ? FBUF_BIT_PRIORITY : 0) | src;
			}
		}
	} else {
		//dst = context->framebuf + line * 320;
		//sprite_buf = context->linebuf + col * 8;
		//plane_a = context->tmp_buf_a + 16 - (context->hscroll_a & 0x7);
		//plane_b = context->tmp_buf_b + 16 - (context->hscroll_b & 0x7);
		//end = dst + 8;
	}
	
	uint16_t remaining;
	if (!(context->flags & FLAG_WINDOW)) {
		remaining = context->hscroll_a & 0xF;
		memcpy(context->tmp_buf_a + SCROLL_BUFFER_DRAW - remaining, context->tmp_buf_a + SCROLL_BUFFER_SIZE - remaining, remaining);
	}
	remaining = context->hscroll_b & 0xF;
	memcpy(context->tmp_buf_b + SCROLL_BUFFER_DRAW - remaining, context->tmp_buf_b + SCROLL_BUFFER_SIZE - remaining, remaining);
}

#define COLUMN_RENDER_BLOCK(column, startcyc) \
	case startcyc:\
		read_map_scroll_a(column, line, context);\
		break;\
	case (startcyc+1):\
		external_slot(context);\
		break;\
	case (startcyc+2):\
		render_map_1(context);\
		break;\
	case (startcyc+3):\
		render_map_2(context);\
		break;\
	case (startcyc+4):\
		read_map_scroll_b(column, line, context);\
		break;\
	case (startcyc+5):\
		read_sprite_x(line, context);\
		break;\
	case (startcyc+6):\
		render_map_3(context);\
		break;\
	case (startcyc+7):\
		render_map_output(line, column, context);\
		break;

#define COLUMN_RENDER_BLOCK_REFRESH(column, startcyc) \
	case startcyc:\
		read_map_scroll_a(column, line, context);\
		break;\
	case (startcyc+1):\
		break;\
	case (startcyc+2):\
		render_map_1(context);\
		break;\
	case (startcyc+3):\
		render_map_2(context);\
		break;\
	case (startcyc+4):\
		read_map_scroll_b(column, line, context);\
		break;\
	case (startcyc+5):\
		read_sprite_x(line, context);\
		break;\
	case (startcyc+6):\
		render_map_3(context);\
		break;\
	case (startcyc+7):\
		render_map_output(line, column, context);\
		break;

void vdp_h40(uint32_t line, uint32_t linecyc, vdp_context * context)
{
	uint16_t address;
	uint32_t mask;
	switch(linecyc)
	{
	//sprite render to line buffer starts
	case 0:
		context->cur_slot = MAX_DRAWS-1;
		memset(context->linebuf, 0, LINEBUF_SIZE);
	case 1:
	case 2:
	case 3:
		if (line == 0xFF) {
			external_slot(context);
		} else {
			render_sprite_cells(context);
		}
		break;
	//sprite attribute table scan starts
	case 4:
		render_sprite_cells( context);
		context->sprite_index = 0x80;
		context->slot_counter = MAX_SPRITES_LINE;
		scan_sprite_table(line, context);
		break;
	case 5:
	case 6:
	case 7:
	case 8:
	case 9:
	case 10:
	case 11:
	case 12:
	case 13:
	case 14:
	case 15:
	case 16:
	case 17:
	case 18:
	case 19:
	case 20:
	//!HSYNC asserted
	case 21:
	case 22:
		render_sprite_cells(context);
		scan_sprite_table(line, context);
		break;
	case 23:
		external_slot(context);
		break;
	case 24:
	case 25:
	case 26:
	case 27:
	case 28:
	case 29:
	case 30:
	case 31:
	case 32:
	case 33:
	case 34:
		render_sprite_cells(context);
		scan_sprite_table(line, context);
		break;
	case 35:
		address = (context->regs[REG_HSCROLL] & 0x3F) << 10;
		mask = 0;
		if (context->regs[REG_MODE_3] & 0x2) {
			mask |= 0xF8;
		}
		if (context->regs[REG_MODE_3] & 0x1) {
			mask |= 0x7;
		}
		line &= mask;
		address += line * 4;
		context->hscroll_a = context->vdpmem[address] << 8 | context->vdpmem[address+1];
		context->hscroll_b = context->vdpmem[address+2] << 8 | context->vdpmem[address+3];
		//printf("%d: HScroll A: %d, HScroll B: %d\n", line, context->hscroll_a, context->hscroll_b);
		break;
	case 36:
	//!HSYNC high
	case 37:
	case 38:
	case 39:
		render_sprite_cells(context);
		scan_sprite_table(line, context);
		break;
	case 40:
		read_map_scroll_a(0, line, context);
		break;
	case 41:
		render_sprite_cells(context);
		scan_sprite_table(line, context);
		break;
	case 42:
		render_map_1(context);
		scan_sprite_table(line, context);//Just a guess
		break;
	case 43:
		render_map_2(context);
		scan_sprite_table(line, context);//Just a guess
		break;
	case 44:
		read_map_scroll_b(0, line, context);
		break;
	case 45:
		render_sprite_cells(context);
		scan_sprite_table(line, context);
		break;
	case 46:
		render_map_3(context);
		scan_sprite_table(line, context);//Just a guess
		break;
	case 47:
		render_map_output(line, 0, context);
		scan_sprite_table(line, context);//Just a guess
		//reverse context slot counter so it counts the number of sprite slots
		//filled rather than the number of available slots
		//context->slot_counter = MAX_SPRITES_LINE - context->slot_counter;
		context->cur_slot = MAX_SPRITES_LINE-1;
		context->sprite_draws = MAX_DRAWS;
		context->flags &= (~FLAG_CAN_MASK & ~FLAG_MASKED);
		break;
	COLUMN_RENDER_BLOCK(2, 48)
	COLUMN_RENDER_BLOCK(4, 56)
	COLUMN_RENDER_BLOCK(6, 64)
	COLUMN_RENDER_BLOCK_REFRESH(8, 72)
	COLUMN_RENDER_BLOCK(10, 80)
	COLUMN_RENDER_BLOCK(12, 88)
	COLUMN_RENDER_BLOCK(14, 96)
	COLUMN_RENDER_BLOCK_REFRESH(16, 104)
	COLUMN_RENDER_BLOCK(18, 112)
	COLUMN_RENDER_BLOCK(20, 120)
	COLUMN_RENDER_BLOCK(22, 128)
	COLUMN_RENDER_BLOCK_REFRESH(24, 136)
	COLUMN_RENDER_BLOCK(26, 144)
	COLUMN_RENDER_BLOCK(28, 152)
	COLUMN_RENDER_BLOCK(30, 160)
	COLUMN_RENDER_BLOCK_REFRESH(32, 168)
	COLUMN_RENDER_BLOCK(34, 176)
	COLUMN_RENDER_BLOCK(36, 184)
	COLUMN_RENDER_BLOCK(38, 192)
	COLUMN_RENDER_BLOCK_REFRESH(40, 200)
	case 208:
	case 209:
		external_slot(context);
		break;
	default:
		//leftovers from HSYNC clock change nonsense
		break;
	}
}

void vdp_h32(uint32_t line, uint32_t linecyc, vdp_context * context)
{
	uint16_t address;
	uint32_t mask;
	switch(linecyc)
	{
	//sprite render to line buffer starts
	case 0:
		context->cur_slot = MAX_DRAWS_H32-1;
		memset(context->linebuf, 0, LINEBUF_SIZE);
	case 1:
	case 2:
	case 3:
		if (line == 0xFF) {
			external_slot(context);
		} else {
			render_sprite_cells(context);
		}
		break;
	//sprite attribute table scan starts
	case 4:
		render_sprite_cells( context);
		context->sprite_index = 0x80;
		context->slot_counter = MAX_SPRITES_LINE_H32;
		scan_sprite_table(line, context);
		break;
	case 5:
	case 6:
	case 7:
	case 8:
	case 9:
	case 10:
	case 11:
	case 12:
	case 13:
		render_sprite_cells(context);
		scan_sprite_table(line, context);
	case 14:
		external_slot(context);
		break;
	case 15:
	case 16:
	case 17:
	case 18:
	case 19:
	//HSYNC start
	case 20:
	case 21:
	case 22:
	case 23:
	case 24:
	case 25:
	case 26:
		render_sprite_cells(context);
		scan_sprite_table(line, context);
		break;
	case 27:
		external_slot(context);
		break;
	case 28:
		address = (context->regs[REG_HSCROLL] & 0x3F) << 10;
		mask = 0;
		if (context->regs[REG_MODE_3] & 0x2) {
			mask |= 0xF8;
		}
		if (context->regs[REG_MODE_3] & 0x1) {
			mask |= 0x7;
		}
		line &= mask;
		address += line * 4;
		context->hscroll_a = context->vdpmem[address] << 8 | context->vdpmem[address+1];
		context->hscroll_b = context->vdpmem[address+2] << 8 | context->vdpmem[address+3];
		//printf("%d: HScroll A: %d, HScroll B: %d\n", line, context->hscroll_a, context->hscroll_b);
		break;
	case 29:
	case 30:
	case 31:
	case 32:
		render_sprite_cells(context);
		scan_sprite_table(line, context);
		break;
	//!HSYNC high
	case 33:
		read_map_scroll_a(0, line, context);
		break;
	case 34:
		render_sprite_cells(context);
		scan_sprite_table(line, context);
		break;
	case 35:
		render_map_1(context);
		scan_sprite_table(line, context);//Just a guess
		break;
	case 36:
		render_map_2(context);
		scan_sprite_table(line, context);//Just a guess
		break;
	case 37:
		read_map_scroll_b(0, line, context);
		break;
	case 38:
		render_sprite_cells(context);
		scan_sprite_table(line, context);
		break;
	case 39:
		render_map_3(context);
		scan_sprite_table(line, context);//Just a guess
		break;
	case 40:
		render_map_output(line, 0, context);
		scan_sprite_table(line, context);//Just a guess
		//reverse context slot counter so it counts the number of sprite slots
		//filled rather than the number of available slots
		//context->slot_counter = MAX_SPRITES_LINE - context->slot_counter;
		context->cur_slot = MAX_SPRITES_LINE_H32-1;
		context->sprite_draws = MAX_DRAWS_H32;
		context->flags &= (~FLAG_CAN_MASK & ~FLAG_MASKED);
		break;
	COLUMN_RENDER_BLOCK(2, 41)
	COLUMN_RENDER_BLOCK(4, 49)
	COLUMN_RENDER_BLOCK(6, 57)
	COLUMN_RENDER_BLOCK_REFRESH(8, 65)
	COLUMN_RENDER_BLOCK(10, 73)
	COLUMN_RENDER_BLOCK(12, 81)
	COLUMN_RENDER_BLOCK(14, 89)
	COLUMN_RENDER_BLOCK_REFRESH(16, 97)
	COLUMN_RENDER_BLOCK(18, 105)
	COLUMN_RENDER_BLOCK(20, 113)
	COLUMN_RENDER_BLOCK(22, 121)
	COLUMN_RENDER_BLOCK_REFRESH(24, 129)
	COLUMN_RENDER_BLOCK(26, 137)
	COLUMN_RENDER_BLOCK(28, 145)
	COLUMN_RENDER_BLOCK(30, 153)
	COLUMN_RENDER_BLOCK_REFRESH(32, 161)
	case 169:
	case 170:
		external_slot(context);
		break;
	}
}
void latch_mode(vdp_context * context)
{
	context->latched_mode = (context->regs[REG_MODE_4] & 0x81) | (context->regs[REG_MODE_2] & BIT_PAL);
}

int is_refresh(vdp_context * context, uint32_t slot)
{
	if (context->latched_mode & BIT_H40) {
		//TODO: Figure out the exact behavior that reduces DMA slots for direct color DMA demos
		return (slot == 37 || slot == 69 || slot == 102 || slot == 133 || slot == 165 || slot == 197 || slot >= 210 || (slot < 6 && (context->flags & FLAG_DMA_RUN) && ((context->dma_cd & 0xF) == CRAM_WRITE)));
	} else {
		//TODO: Figure out which slots are refresh when display is off in 32-cell mode
		//These numbers are guesses based on H40 numbers
		return (slot == 24 || slot == 56 || slot == 88 || slot == 120 || slot == 152 || (slot < 5 && (context->flags & FLAG_DMA_RUN) && ((context->dma_cd & 0xF) == CRAM_WRITE)));
		//The numbers below are the refresh slots during active display
		//return (slot == 66 || slot == 98 || slot == 130 || slot == 162);
	}
}

void check_render_bg(vdp_context * context, int32_t line, uint32_t slot)
{
	if (line > 0) {
		line -= 1;
		uint16_t * start = NULL, *end = NULL;
		if (context->latched_mode & BIT_H40) {
			if (slot >= 50 && slot < 210) {
				uint32_t x = (slot-50)*2;
				start = context->framebuf + line * 320 + x;
				end = start + 2;
			}
		} else {
			if (slot >= 43 && slot < 171) {
				uint32_t x = (slot-43)*2;
				start = context->framebuf + line * 320 + x;
				end = start + 2;
			}
		}
		uint16_t color = (context->cram[context->regs[REG_BG_COLOR] & 0x3F] & 0xEEE);
		while (start != end) {
			*start = color;
			++start;
		}
	}
}

void vdp_run_context(vdp_context * context, uint32_t target_cycles)
{
	while(context->cycles < target_cycles)
	{
		uint32_t line = context->cycles / MCLKS_LINE;
		uint32_t active_lines = context->latched_mode & BIT_PAL ? PAL_ACTIVE : NTSC_ACTIVE;
		if (!context->cycles) {
			latch_mode(context);
		}
		uint32_t linecyc = context->cycles % MCLKS_LINE;
		if (linecyc == 0) {
			if (line <= 1 || line >= active_lines) {
				context->hint_counter = context->regs[REG_HINT];
			} else if (context->hint_counter) {
				context->hint_counter--;
			} else {
				context->flags2 |= FLAG2_HINT_PENDING;
				context->hint_counter = context->regs[REG_HINT];
			}
		} else if(line == active_lines) {
			uint32_t intcyc = context->latched_mode & BIT_H40 ? VINT_CYCLE_H40 :  VINT_CYCLE_H32;
			if (linecyc == intcyc) {
				context->flags2 |= FLAG2_VINT_PENDING;
			}
		}
		uint32_t inccycles, slot;
		if (context->latched_mode & BIT_H40){
			if (linecyc < MCLKS_SLOT_H40*HSYNC_SLOT_H40) {
				slot = linecyc/MCLKS_SLOT_H40;
				inccycles = MCLKS_SLOT_H40;
			} else if(linecyc < MCLK_WEIRD_END) {
				switch(linecyc-(MCLKS_SLOT_H40*HSYNC_SLOT_H40))
				{
				case 0:
					inccycles = 19;
					slot = 0;
					break;
				case 19:
					slot = 1;
					inccycles = 20;
					break;
				case 39:
					slot = 2;
					inccycles = 20;
					break;
				case 59:
					slot = 3;
					inccycles = 20;
					break;
				case 79:
					slot = 4;
					inccycles = 18;
					break;
				case 97:
					slot = 5;
					inccycles = 20;
					break;
				case 117:
					slot = 6;
					inccycles = 20;
					break;
				case 137:
					slot = 7;
					inccycles = 20;
					break;
				case 157:
					slot = 8;
					inccycles = 18;
					break;
				case 175:
					slot = 9;
					inccycles = 20;
					break;
				case 195:
					slot = 10;
					inccycles = 20;
					break;
				case 215:
					slot = 11;
					inccycles = 20;
					break;
				case 235:
					slot = 12;
					inccycles = 18;
					break;
				case 253:
					slot = 13;
					inccycles = 20;
					break;
				case 273:
					slot = 14;
					inccycles = 20;
					break;
				case 293:
					slot = 15;
					inccycles = 20;
					break;
				case 313:
					slot = 16;
					inccycles = 19;
					break;
				default:
					fprintf(stderr, "cycles after weirdness %d\n", linecyc-(MCLKS_SLOT_H40*HSYNC_SLOT_H40));
					exit(1);
				}
				slot += HSYNC_SLOT_H40;
			} else {
				slot = (linecyc-MCLK_WEIRD_END)/MCLKS_SLOT_H40 + SLOT_WEIRD_END;
				inccycles = MCLKS_SLOT_H40;
			}
		} else {
			inccycles = MCLKS_SLOT_H32;
			slot = linecyc/MCLKS_SLOT_H32;
		}
		if ((line < active_lines || (line == active_lines && linecyc < (context->latched_mode & BIT_H40 ? 64 : 80))) && context->regs[REG_MODE_2] & DISPLAY_ENABLE) {
			//first sort-of active line is treated as 255 internally
			//it's used for gathering sprite info for line 
			line = (line - 1) & 0xFF;
			
			//Convert to slot number
			if (context->latched_mode & BIT_H40){
				vdp_h40(line, slot, context);
			} else {
				vdp_h32(line, slot, context);
			}
		} else {
			if (!is_refresh(context, slot)) {
				external_slot(context);
			}
			if (line < active_lines) {
				check_render_bg(context, line, slot);
			}
		}
		context->cycles += inccycles;
	}
}

uint32_t vdp_run_to_vblank(vdp_context * context)
{
	uint32_t target_cycles = ((context->latched_mode & BIT_PAL) ? PAL_ACTIVE : NTSC_ACTIVE) * MCLKS_LINE;
	vdp_run_context(context, target_cycles);
	return context->cycles;
}

void vdp_run_dma_done(vdp_context * context, uint32_t target_cycles)
{
	for(;;) {
		uint32_t dmalen = (context->regs[REG_DMALEN_H] << 8) | context->regs[REG_DMALEN_L];
		if (!dmalen) {
			dmalen = 0x10000;
		}
		uint32_t min_dma_complete = dmalen * (context->latched_mode & BIT_H40 ? 16 : 20);
		if ((context->regs[REG_DMASRC_H] & 0xC0) == 0xC0 || (context->cd & 0xF) == VRAM_WRITE) {
			//DMA copies take twice as long to complete since they require a read and a write
			//DMA Fills and transfers to VRAM also take twice as long as it requires 2 writes for a single word
			min_dma_complete *= 2;
		}
		min_dma_complete += context->cycles;
		if (target_cycles < min_dma_complete) {
			vdp_run_context(context, target_cycles);
			return;
		} else {
			vdp_run_context(context, min_dma_complete);
			if (!(context->flags & FLAG_DMA_RUN)) {
				return;
			}
		}
	}
}

int vdp_control_port_write(vdp_context * context, uint16_t value)
{
	//printf("control port write: %X\n", value);
	if (context->flags & FLAG_DMA_RUN) {
		return -1;
	}
	if (context->flags & FLAG_PENDING) {
		context->address = (context->address & 0x3FFF) | (value << 14);
		context->cd = (context->cd & 0x3) | ((value >> 2) & 0x3C);
		context->flags &= ~FLAG_PENDING;
		//printf("New Address: %X, New CD: %X\n", context->address, context->cd);
		if (context->cd & 0x20 && (context->regs[REG_MODE_2] & BIT_DMA_ENABLE)) {
			//
			if((context->regs[REG_DMASRC_H] & 0xC0) != 0x80) {
				//DMA copy or 68K -> VDP, transfer starts immediately
				context->flags |= FLAG_DMA_RUN;
				context->dma_cd = context->cd;
				if (!(context->regs[REG_DMASRC_H] & 0x80)) {
					//printf("DMA Address: %X, New CD: %X, Source: %X, Length: %X\n", context->address, context->cd, (context->regs[REG_DMASRC_H] << 17) | (context->regs[REG_DMASRC_M] << 9) | (context->regs[REG_DMASRC_L] << 1), context->regs[REG_DMALEN_H] << 8 | context->regs[REG_DMALEN_L]);
					return 1;
				} else {
					//printf("DMA Copy Address: %X, New CD: %X, Source: %X\n", context->address, context->cd, (context->regs[REG_DMASRC_M] << 8) | context->regs[REG_DMASRC_L]);
				}
			} else {
				//printf("DMA Fill Address: %X, New CD: %X\n", context->address, context->cd);
			}
		}
	} else {
		if ((value & 0xC000) == 0x8000) {
			//Register write
			uint8_t reg = (value >> 8) & 0x1F;
			if (reg < VDP_REGS) {
				//printf("register %d set to %X\n", reg, value & 0xFF);
				context->regs[reg] = value;
				if (reg == REG_MODE_2) {
					//printf("Display is now %s\n", (context->regs[REG_MODE_2] & DISPLAY_ENABLE) ? "enabled" : "disabled");
				}
			}
		} else {
			context->flags |= FLAG_PENDING;
			context->address = (context->address &0xC000) | (value & 0x3FFF);
			context->cd = (context->cd &0x3C) | (value >> 14);
		}
	}
	return 0;
}

int vdp_data_port_write(vdp_context * context, uint16_t value)
{
	//printf("data port write: %X\n", value);
	if (context->flags & FLAG_DMA_RUN) {
		return -1;
	}
	if (!(context->cd & 1)) {
		//ignore writes when cd is configured for read
		return 0;
	}
	context->flags &= ~FLAG_PENDING;
	/*if (context->fifo_cur == context->fifo_end) {
		printf("FIFO full, waiting for space before next write at cycle %X\n", context->cycles);
	}*/
	while (context->fifo_cur == context->fifo_end) {
		vdp_run_context(context, context->cycles + ((context->latched_mode & BIT_H40) ? 16 : 20));
	}
	context->fifo_cur->cycle = context->cycles;
	context->fifo_cur->address = context->address;
	context->fifo_cur->value = value;
	context->fifo_cur->cd = context->cd;
	context->fifo_cur->partial = 0;
	context->fifo_cur++;
	context->address += context->regs[REG_AUTOINC];
	return 0;
}

uint16_t vdp_control_port_read(vdp_context * context)
{
	context->flags &= ~FLAG_PENDING;
	uint16_t value = 0x3400;
	if (context->fifo_cur == (context->fifo_end - FIFO_SIZE)) {
		value |= 0x200;
	}
	if (context->fifo_cur == context->fifo_end) {
		value |= 0x100;
	}
	if (context->flags2 & FLAG2_VINT_PENDING) {
		value |- 0x80;
	}
	uint32_t line= context->cycles / MCLKS_LINE;
	uint32_t linecyc = context->cycles % MCLKS_LINE;
	if (line >= (context->latched_mode & BIT_PAL ? PAL_ACTIVE : NTSC_ACTIVE)) {
		value |= 0x8;
	}
	if (linecyc < (context->latched_mode & BIT_H40 ? HBLANK_CLEAR_H40 : HBLANK_CLEAR_H32)) {
		value |= 0x4;
	}
	if (context->flags & FLAG_DMA_RUN) {
		value |= 0x2;
	}
	if (context->latched_mode & BIT_PAL) {//Not sure about this, need to verify
		value |= 0x1;
	}
	//TODO: Sprite overflow, sprite collision, odd frame flag
	return value;
}

uint16_t vdp_data_port_read(vdp_context * context)
{
	context->flags &= ~FLAG_PENDING;
	if (context->cd & 1) {
		return 0;
	}
	//Not sure if the FIFO should be drained before processing a read or not, but it would make sense
	context->flags &= ~FLAG_UNUSED_SLOT;
	while (!(context->flags & FLAG_UNUSED_SLOT)) {
		vdp_run_context(context, context->cycles + ((context->latched_mode & BIT_H40) ? 16 : 20));
	}
	uint16_t value = 0;
	switch (context->cd & 0xF)
	{
	case VRAM_READ:
		value = context->vdpmem[context->address] << 8;
		context->flags &= ~FLAG_UNUSED_SLOT;
		while (!(context->flags & FLAG_UNUSED_SLOT)) {
			vdp_run_context(context, context->cycles + ((context->latched_mode & BIT_H40) ? 16 : 20));
		}
		value |= context->vdpmem[context->address ^ 1];
		break;
	case CRAM_READ:
		value = context->cram[(context->address/2) & (CRAM_SIZE-1)];
		break;
	case VSRAM_READ:
		if (((context->address / 2) & 63) < VSRAM_SIZE) {
			value = context->vsram[context->address & 63];
		}
		break;
	}
	context->address += context->regs[REG_AUTOINC];
	return value;
}

uint16_t vdp_hv_counter_read(vdp_context * context)
{
	//TODO: deal with clock adjustemnts handled in vdp_run_context
	uint32_t line= context->cycles / MCLKS_LINE;
	if (!line) {
		line = 0xFF;
	} else {
		line--;
		if (line > 0xEA) {
			line = (line + 0xFA) & 0xFF;
		}
	}
	uint32_t linecyc = context->cycles % MCLKS_LINE;
	if (context->latched_mode & BIT_H40) {
		uint32_t slot;
		if (linecyc < MCLKS_SLOT_H40*HSYNC_SLOT_H40) {
			slot = linecyc/MCLKS_SLOT_H40;
		} else if(linecyc < MCLK_WEIRD_END) {
			switch(linecyc-(MCLKS_SLOT_H40*HSYNC_SLOT_H40))
			{
			case 0:
				slot = 0;
				break;
			case 19:
				slot = 1;
				break;
			case 39:
				slot = 2;
				break;
			case 59:
				slot = 2;
				break;
			case 79:
				slot = 3;
				break;
			case 97:
				slot = 4;
				break;
			case 117:
				slot = 5;
				break;
			case 137:
				slot = 6;
				break;
			case 157:
				slot = 7;
				break;
			case 175:
				slot = 8;
				break;
			case 195:
				slot = 9;
				break;
			case 215:
				slot = 11;
				break;
			case 235:
				slot = 12;
				break;
			case 253:
				slot = 13;
				break;
			case 273:
				slot = 14;
				break;
			case 293:
				slot = 15;
				break;
			case 313:
				slot = 16;
				break;
			default:
				fprintf(stderr, "cycles after weirdness %d\n", linecyc-(MCLKS_SLOT_H40*HSYNC_SLOT_H40));
				exit(1);
			}
			slot += HSYNC_SLOT_H40;
		} else {
			slot = (linecyc-MCLK_WEIRD_END)/MCLKS_SLOT_H40 + SLOT_WEIRD_END;
		}
		linecyc = slot * 2;
		if (linecyc >= 86) {
			linecyc -= 86;
		} else {
			linecyc += 334;
		}
		if (linecyc > 0x16C) {
			linecyc += 92;
		}
	} else {
		linecyc /= 10;
		if (linecyc >= 74) {
			linecyc -= 74;
		} else {
			linecyc += 268;
		}
		if (linecyc > 0x127) {
			linecyc += 170;
		}
	}
	linecyc &= 0xFF;
	return (line << 8) | linecyc;
}

void vdp_adjust_cycles(vdp_context * context, uint32_t deduction)
{
	context->cycles -= deduction;
	for(fifo_entry * start = (context->fifo_end - FIFO_SIZE); start < context->fifo_cur; start++) {
		if (start->cycle >= deduction) {
			start->cycle -= deduction;
		} else {
			start->cycle = 0;
		}
	}
}

uint32_t vdp_next_hint(vdp_context * context)
{
	if (!(context->regs[REG_MODE_1] & BIT_HINT_EN)) {
		return 0xFFFFFFFF;
	}
	if (context->flags2 & FLAG2_HINT_PENDING) {
		return context->cycles;
	}
	uint32_t active_lines = context->latched_mode & BIT_PAL ? PAL_ACTIVE : NTSC_ACTIVE;
	uint32_t line = context->cycles / MCLKS_LINE;
	if (line >= active_lines) {
		return 0xFFFFFFFF;
	}
	uint32_t linecyc = context->cycles % MCLKS_LINE;
	uint32_t hcycle = context->cycles + context->hint_counter * MCLKS_LINE + MCLKS_LINE - linecyc;
	if (!line) {
		hcycle += MCLKS_LINE;
	}
	return hcycle;
}

uint32_t vdp_next_vint(vdp_context * context)
{
	if (!(context->regs[REG_MODE_2] & BIT_VINT_EN)) {
		return 0xFFFFFFFF;
	}
	if (context->flags2 & FLAG2_VINT_PENDING) {
		return context->cycles;
	}
	uint32_t active_lines = context->latched_mode & BIT_PAL ? PAL_ACTIVE : NTSC_ACTIVE;
	uint32_t vcycle =  MCLKS_LINE * active_lines;
	if (context->latched_mode & BIT_H40) {
		vcycle += VINT_CYCLE_H40;
	} else {
		vcycle += VINT_CYCLE_H32;
	}
	if (vcycle < context->cycles) {
		return 0xFFFFFFFF;
	}
	return vcycle;
}

uint32_t vdp_next_vint_z80(vdp_context * context)
{
	uint32_t active_lines = context->latched_mode & BIT_PAL ? PAL_ACTIVE : NTSC_ACTIVE;
	uint32_t vcycle =  MCLKS_LINE * active_lines;
	if (context->latched_mode & BIT_H40) {
		vcycle += VINT_CYCLE_H40;
	} else {
		vcycle += VINT_CYCLE_H32;
	}
	return vcycle;
}

void vdp_int_ack(vdp_context * context, uint16_t int_num)
{
	if (int_num == 6) {
		context->flags2 &= ~FLAG2_VINT_PENDING;
	} else if(int_num ==4) {
		context->flags2 &= ~FLAG2_HINT_PENDING;
	}
}

#define GST_VDP_REGS 0xFA
#define GST_VDP_MEM 0x12478

void vdp_load_savestate(vdp_context * context, FILE * state_file)
{
	uint8_t tmp_buf[CRAM_SIZE*2];
	fseek(state_file, GST_VDP_REGS, SEEK_SET);
	fread(context->regs, 1, VDP_REGS, state_file);
	latch_mode(context);
	fread(tmp_buf, 1, sizeof(tmp_buf), state_file);
	for (int i = 0; i < CRAM_SIZE; i++) {
		context->cram[i] = (tmp_buf[i*2+1] << 8) | tmp_buf[i*2];
	}
	fread(tmp_buf, 2, VSRAM_SIZE, state_file);
	for (int i = 0; i < VSRAM_SIZE; i++) {
		context->vsram[i] = (tmp_buf[i*2+1] << 8) | tmp_buf[i*2];
	}
	fseek(state_file, GST_VDP_MEM, SEEK_SET);
	fread(context->vdpmem, 1, VRAM_SIZE, state_file);
}

void vdp_save_state(vdp_context * context, FILE * outfile)
{
	uint8_t tmp_buf[CRAM_SIZE*2];
	fseek(outfile, GST_VDP_REGS, SEEK_SET);
	fwrite(context->regs, 1, VDP_REGS, outfile);
	for (int i = 0; i < CRAM_SIZE; i++) {
		tmp_buf[i*2] = context->cram[i];
		tmp_buf[i*2+1] = context->cram[i] >> 8;
	}
	fwrite(tmp_buf, 1, sizeof(tmp_buf), outfile);
	for (int i = 0; i < VSRAM_SIZE; i++) {
		tmp_buf[i*2] = context->vsram[i];
		tmp_buf[i*2+1] = context->vsram[i] >> 8;
	}
	fwrite(tmp_buf, 2, VSRAM_SIZE, outfile);
	fseek(outfile, GST_VDP_MEM, SEEK_SET);
	fwrite(context->vdpmem, 1, VRAM_SIZE, outfile);
}