view ym2612.c @ 380:1c8d74f2ab0b

Make the PSG and YM2612 use the master clock internal with an increment based on clock divider so that they stay perflectly in sync. Run both the PSG and YM2612 whenver one of them needs to be run.
author Mike Pavone <pavone@retrodev.com>
date Mon, 03 Jun 2013 21:43:38 -0700
parents 3218e2f8d685
children 7815ebbbd705
line wrap: on
line source

#include <string.h>
#include <math.h>
#include <stdio.h>
#include <stdlib.h>
#include "ym2612.h"
#include "render.h"

//#define DO_DEBUG_PRINT
#ifdef DO_DEBUG_PRINT
#define dfprintf fprintf
#define dfopen(var, fname, mode) var=fopen(fname, mode)
#else
#define dfprintf
#define dfopen(var, fname, mode)
#endif

#define BUSY_CYCLES 17
#define OP_UPDATE_PERIOD 144

enum {
	REG_TIMERA_HIGH  = 0x24,
	REG_TIMERA_LOW,
	REG_TIMERB,
	REG_TIME_CTRL,
	REG_KEY_ONOFF,
	REG_DAC          = 0x2A,
	REG_DAC_ENABLE,

	REG_DETUNE_MULT  = 0x30,
	REG_TOTAL_LEVEL  = 0x40,
	REG_ATTACK_KS    = 0x50,
	REG_DECAY_AM     = 0x60,
	REG_SUSTAIN_RATE = 0x70,
	REG_S_LVL_R_RATE = 0x80,

	REG_FNUM_LOW     = 0xA0,
	REG_BLOCK_FNUM_H = 0xA4,
	REG_FNUM_LOW_CH3 = 0xA8,
	REG_BLOCK_FN_CH3 = 0xAC,
	REG_ALG_FEEDBACK = 0xB0,
	REG_LR_AMS_PMS   = 0xB4
};

#define BIT_TIMERA_ENABLE 0x1
#define BIT_TIMERB_ENABLE 0x2
#define BIT_TIMERA_OVEREN 0x4
#define BIT_TIMERB_OVEREN 0x8
#define BIT_TIMERA_RESET  0x10
#define BIT_TIMERB_RESET  0x20

#define BIT_STATUS_TIMERA 0x1
#define BIT_STATUS_TIMERB 0x2

enum {
	PHASE_ATTACK,
	PHASE_DECAY,
	PHASE_SUSTAIN,
	PHASE_RELEASE
};

uint8_t did_tbl_init = 0;
//According to Nemesis, real hardware only uses a 256 entry quarter sine table; however,
//memory is cheap so using a half sine table will probably save some cycles
//a full sine table would be nice, but negative numbers don't get along with log2
#define SINE_TABLE_SIZE 512
uint16_t sine_table[SINE_TABLE_SIZE];
//Similar deal here with the power table for log -> linear conversion
//According to Nemesis, real hardware only uses a 256 entry table for the fractional part
//and uses the whole part as a shift amount.
#define POW_TABLE_SIZE (1 << 13)
uint16_t pow_table[POW_TABLE_SIZE];

uint16_t rate_table_base[] = {
	//main portion
	0,1,0,1,0,1,0,1,
	0,1,0,1,1,1,0,1,
	0,1,1,1,0,1,1,1,
	0,1,1,1,1,1,1,1,
	//top end
	1,1,1,1,1,1,1,1,
	1,1,1,2,1,1,1,2,
	1,2,1,2,1,2,1,2,
	1,2,2,2,1,2,2,2,
};

uint16_t rate_table[64*8];

#define MAX_ENVELOPE 0xFFC
#define YM_DIVIDER 2
#define CYCLE_NEVER 0xFFFFFFFF

uint16_t round_fixed_point(double value, int dec_bits)
{
	return value * (1 << dec_bits) + 0.5;
}

FILE * debug_file = NULL;
uint32_t first_key_on=0;

void ym_init(ym2612_context * context, uint32_t sample_rate, uint32_t master_clock, uint32_t clock_div, uint32_t sample_limit)
{
	dfopen(debug_file, "ym_debug.txt", "w");
	memset(context, 0, sizeof(*context));
	context->audio_buffer = malloc(sizeof(*context->audio_buffer) * sample_limit*2);
	context->back_buffer = malloc(sizeof(*context->audio_buffer) * sample_limit*2);
	context->buffer_inc = ((double)sample_rate / (double)master_clock) * clock_div * 6;
	context->clock_inc = clock_div * 6;
	context->sample_limit = sample_limit*2;
	context->write_cycle = CYCLE_NEVER;
	for (int i = 0; i < NUM_OPERATORS; i++) {
		context->operators[i].envelope = MAX_ENVELOPE;
		context->operators[i].env_phase = PHASE_RELEASE;
	}
	//some games seem to expect that the LR flags start out as 1
	for (int i = 0; i < NUM_CHANNELS; i++) {
		context->channels[i].lr = 0xC0;
	}
	if (!did_tbl_init) {
		//populate sine table
		for (int32_t i = 0; i < 512; i++) {
			double sine = sin( ((double)(i*2+1) / SINE_TABLE_SIZE) * M_PI_2 );
			
			//table stores 4.8 fixed pointed representation of the base 2 log
			sine_table[i] = round_fixed_point(-log2(sine), 8);
		}
		//populate power table
		for (int32_t i = 0; i < POW_TABLE_SIZE; i++) {
			double linear = pow(2, -((double)((i & 0xFF)+1) / 256.0));
			int32_t tmp = round_fixed_point(linear, 11);
			int32_t shift = (i >> 8) - 2;
			if (shift < 0) {
				tmp <<= 0-shift;
			} else {
				tmp >>= shift;
			}
			pow_table[i] =  tmp;
		}
		//populate envelope generator rate table, from small base table
		for (int rate = 0; rate < 64; rate++) {
			for (int cycle = 0; cycle < 8; cycle++) {
				uint16_t value;
				if (rate < 2) {
					value = 0;
				} else if (rate >= 60) {
					value = 8;
				} else if (rate < 8) {
					value = rate_table_base[((rate & 6) == 6 ? 16 : 0) + cycle];
				} else if (rate < 48) {
					value = rate_table_base[(rate & 0x3) * 8 + cycle];
				} else {
					value = rate_table_base[32 + (rate & 0x3) * 8 + cycle] << ((rate - 48) >> 2);
				}
				rate_table[rate * 8 + cycle] = value;
			}
		}
	}
}

#define YM_VOLUME_DIVIDER 2
#define YM_MOD_SHIFT 4

void ym_run(ym2612_context * context, uint32_t to_cycle)
{
	//printf("Running YM2612 from cycle %d to cycle %d\n", context->current_cycle, to_cycle);
	//TODO: Fix channel update order OR remap channels in register write
	for (; context->current_cycle < to_cycle; context->current_cycle += context->clock_inc) {
		//Update timers at beginning of 144 cycle period
		if (!context->current_op && context->timer_control & BIT_TIMERA_ENABLE) {
			if (context->timer_a) {
				context->timer_a--;
			} else {
				if (context->timer_control & BIT_TIMERA_OVEREN) {
					context->status |= BIT_STATUS_TIMERA;
				}
				context->timer_a = context->timer_a_load;
			}
			if (context->timer_control & BIT_TIMERB_ENABLE) {
				uint32_t b_cyc = (context->current_cycle / OP_UPDATE_PERIOD) % 16;
				if (!b_cyc) {
					if (context->timer_b) {
						context->timer_b--;
					} else {
						if (context->timer_control & BIT_TIMERB_OVEREN) {
							context->status |= BIT_STATUS_TIMERB;
						}
						context->timer_b = context->timer_b_load;
					}
				}
			}
		}
		//Update Envelope Generator
		if (!(context->current_op % 3)) {
			uint32_t env_cyc = context->env_counter;
			uint32_t op = context->current_env_op;
			ym_operator * operator = context->operators + op;
			ym_channel * channel = context->channels + op/4;
			uint8_t rate;
			for(;;) {
				rate = operator->rates[operator->env_phase];
				if (rate) {
					uint8_t ks = channel->keycode >> operator->key_scaling;;
					rate = rate*2 + ks;
					if (rate > 63) {
						rate = 63;
					}
				}
				//Deal with "infinite" rates
				//According to Nemesis this should be handled in key-on instead
				if (rate >= 62 && operator->env_phase == PHASE_ATTACK) {
					operator->env_phase = PHASE_DECAY;
					operator->envelope = 0;
				} else {
					break;
				}
			}
			uint32_t cycle_shift = rate < 0x30 ? ((0x2F - rate) >> 2) : 0;
			if (first_key_on) {
				dfprintf(debug_file, "Operator: %d, env rate: %d (2*%d+%d), env_cyc: %d, cycle_shift: %d, env_cyc & ((1 << cycle_shift) - 1): %d\n", op, rate, operator->rates[operator->env_phase], channel->keycode >> operator->key_scaling,env_cyc, cycle_shift, env_cyc & ((1 << cycle_shift) - 1));
			}
			if (!(env_cyc & ((1 << cycle_shift) - 1))) {
				uint32_t update_cycle = env_cyc >> cycle_shift & 0x7;
				//envelope value is 10-bits, but it will be used as a 4.8 value
				uint16_t envelope_inc = rate_table[rate * 8 + update_cycle] << 2;
				if (operator->env_phase == PHASE_ATTACK) {
					//this can probably be optimized to a single shift rather than a multiply + shift
					if (first_key_on) {
						dfprintf(debug_file, "Changing op %d envelope %d by %d(%d * %d) in attack phase\n", op, operator->envelope, (~operator->envelope * envelope_inc) >> 4, ~operator->envelope, envelope_inc);
					}
					operator->envelope += (~operator->envelope * envelope_inc) >> 4;
					operator->envelope &= MAX_ENVELOPE;
					if (!operator->envelope) {
						operator->envelope = 0;
						operator->env_phase = PHASE_DECAY;
					}
				} else {
					if (first_key_on) {
						dfprintf(debug_file, "Changing op %d envelope %d by %d in %s phase\n", op, operator->envelope, envelope_inc, 
							operator->env_phase == PHASE_SUSTAIN ? "sustain" : (operator->env_phase == PHASE_DECAY ? "decay": "release"));
					}
					operator->envelope += envelope_inc;
					//clamp to max attenuation value
					if (operator->envelope > MAX_ENVELOPE) {
						operator->envelope = MAX_ENVELOPE;
					}
					if (operator->env_phase == PHASE_DECAY && operator->envelope >= operator->sustain_level) {
						//operator->envelope = operator->sustain_level;
						operator->env_phase = PHASE_SUSTAIN;
					}
				}
			}
			context->current_env_op++;
			if (context->current_env_op == NUM_OPERATORS) {
				context->current_env_op = 0;
				context->env_counter++;
			}
		}
		
		//Update Phase Generator
		uint32_t channel = context->current_op / 4;
		if (channel != 5 || !context->dac_enable) {
			uint32_t op = context->current_op;
			//printf("updating operator %d of channel %d\n", op, channel);
			ym_operator * operator = context->operators + op;
			ym_channel * chan = context->channels + channel;
			//TODO: Modulate phase by LFO if necessary
			operator->phase_counter += operator->phase_inc;
			uint16_t phase = operator->phase_counter >> 10 & 0x3FF;
			int16_t mod = 0;
			switch (op % 4)
			{
			case 0://Operator 1
				if (chan->feedback) {
					mod = operator->output >> (9-chan->feedback);
				}
				break;
			case 1://Operator 3
				switch(chan->algorithm)
				{
				case 0:
				case 2:
					//modulate by operator 2
					mod = context->operators[op+1].output >> YM_MOD_SHIFT;
					break;
				case 1:
					//modulate by operator 1+2
					mod = (context->operators[op-1].output + context->operators[op+1].output) >> YM_MOD_SHIFT;
					break;
				case 5:
					//modulate by operator 1
					mod = context->operators[op-1].output >> YM_MOD_SHIFT;
				}
				break;
			case 2://Operator 2
				if (chan->algorithm != 1 && chan->algorithm != 2 || chan->algorithm != 7) {
					//modulate by Operator 1
					mod = context->operators[op-2].output >> YM_MOD_SHIFT;
				}
				break;
			case 3://Operator 4
				switch(chan->algorithm)
				{
				case 0:
				case 1:
				case 4:
					//modulate by operator 3
					mod = context->operators[op-2].output >> YM_MOD_SHIFT;
					break;
				case 2:
					//modulate by operator 1+3
					mod = (context->operators[op-3].output + context->operators[op-2].output) >> YM_MOD_SHIFT;
					break;
				case 3:
					//modulate by operator 2+3
					mod = (context->operators[op-1].output + context->operators[op-2].output) >> YM_MOD_SHIFT;
					break;
				case 5:
					//modulate by operator 1
					mod = context->operators[op-3].output >> YM_MOD_SHIFT;
					break;
				}
				break;
			}
			uint16_t env = operator->envelope + operator->total_level;
			if (env > MAX_ENVELOPE) {
				env = MAX_ENVELOPE;
			}
			if (first_key_on) {
				dfprintf(debug_file, "op %d, base phase: %d, mod: %d, sine: %d, out: %d\n", op, phase, mod, sine_table[(phase+mod) & 0x1FF], pow_table[sine_table[phase & 0x1FF] + env]);
			}
			phase += mod;
			
			int16_t output = pow_table[sine_table[phase & 0x1FF] + env];
			if (phase & 0x200) {
				output = -output;
			}
			operator->output = output;
			//Update the channel output if we've updated all operators
			if (op % 4 == 3) {
				if (chan->algorithm < 4) {
					chan->output = operator->output;
				} else if(chan->algorithm == 4) {
					chan->output = operator->output + context->operators[channel * 4 + 1].output;
				} else {
					output = 0;
					for (uint32_t op = ((chan->algorithm == 7) ? 0 : 1) + channel*4; op < (channel+1)*4; op++) {
						output += context->operators[op].output;
					}
					chan->output = output;
				}
				if (first_key_on) {
					int16_t value = context->channels[channel].output & 0x3FE0;
					if (value & 0x2000) {
						value |= 0xC000;
					}
					dfprintf(debug_file, "channel %d output: %d\n", channel, value / YM_VOLUME_DIVIDER);
				}
			}
			//puts("operator update done");
		}
		context->current_op++;
		context->buffer_fraction += context->buffer_inc;
		if (context->buffer_fraction > 1.0) {
			context->buffer_fraction -= 1.0;
			context->audio_buffer[context->buffer_pos] = 0;
			context->audio_buffer[context->buffer_pos + 1] = 0;
			for (int i = 0; i < NUM_CHANNELS; i++) {
				int16_t value = context->channels[i].output & 0x3FE0;
				if (value & 0x2000) {
					value |= 0xC000;
				}
				if (context->channels[i].lr & 0x80) {
					context->audio_buffer[context->buffer_pos] += value / YM_VOLUME_DIVIDER;
				}
				if (context->channels[i].lr & 0x40) {
					context->audio_buffer[context->buffer_pos+1] += value / YM_VOLUME_DIVIDER;
				}
			}
			context->buffer_pos += 2;
			if (context->buffer_pos == context->sample_limit) {
				render_wait_ym(context);
			}
		}
		if (context->current_op == NUM_OPERATORS) {
			context->current_op = 0;
		}
	}
	if (context->current_cycle >= context->write_cycle + (BUSY_CYCLES * context->clock_inc / 6)) {
		context->status &= 0x7F;
		context->write_cycle = CYCLE_NEVER;
	}
	//printf("Done running YM2612 at cycle %d\n", context->current_cycle, to_cycle);
}

void ym_address_write_part1(ym2612_context * context, uint8_t address)
{
	//printf("address_write_part1: %X\n", address);
	context->selected_reg = address;
	context->selected_part = 0;
}

void ym_address_write_part2(ym2612_context * context, uint8_t address)
{
	//printf("address_write_part2: %X\n", address);
	context->selected_reg = address;
	context->selected_part = 1;
}

uint8_t fnum_to_keycode[] = {
	//F11 = 0
	0,0,0,0,0,0,0,1,
	//F11 = 1
	2,3,3,3,3,3,3,3
};

//table courtesy of Nemesis
uint32_t detune_table[][4] = {
	{0, 0, 1, 2},   //0  (0x00)
    {0, 0, 1, 2},   //1  (0x01)
    {0, 0, 1, 2},   //2  (0x02)
    {0, 0, 1, 2},   //3  (0x03)
    {0, 1, 2, 2},   //4  (0x04)
    {0, 1, 2, 3},   //5  (0x05)
    {0, 1, 2, 3},   //6  (0x06)
    {0, 1, 2, 3},   //7  (0x07)
    {0, 1, 2, 4},   //8  (0x08)
    {0, 1, 3, 4},   //9  (0x09)
    {0, 1, 3, 4},   //10 (0x0A)
    {0, 1, 3, 5},   //11 (0x0B)
    {0, 2, 4, 5},   //12 (0x0C)
    {0, 2, 4, 6},   //13 (0x0D)
    {0, 2, 4, 6},   //14 (0x0E)
    {0, 2, 5, 7},   //15 (0x0F)
    {0, 2, 5, 8},   //16 (0x10)
    {0, 3, 6, 8},   //17 (0x11)
    {0, 3, 6, 9},   //18 (0x12)
    {0, 3, 7,10},   //19 (0x13)
    {0, 4, 8,11},   //20 (0x14)
    {0, 4, 8,12},   //21 (0x15)
    {0, 4, 9,13},   //22 (0x16)
    {0, 5,10,14},   //23 (0x17)
    {0, 5,11,16},   //24 (0x18)
    {0, 6,12,17},   //25 (0x19)
    {0, 6,13,19},   //26 (0x1A)
    {0, 7,14,20},   //27 (0x1B)
    {0, 8,16,22},   //28 (0x1C)
    {0, 8,16,22},   //29 (0x1D)
    {0, 8,16,22},   //30 (0x1E)
    {0, 8,16,22}
};  //31 (0x1F)

void ym_update_phase_inc(ym2612_context * context, ym_operator * operator, uint32_t op)
{
	uint32_t chan_num = op / 4;
	//printf("ym_update_phase_inc | channel: %d, op: %d\n", chan_num, op);
	//base frequency
	ym_channel * channel = context->channels + chan_num;
	uint32_t inc = channel->fnum;
	if (!channel->block) {
		inc >>= 1;
	} else {
		inc <<= (channel->block-1);
	}
	//detune
	uint32_t detune = detune_table[channel->keycode][operator->detune & 0x3];
	if (operator->detune & 0x40) {
		inc -= detune;
		//this can underflow, mask to 17-bit result
		inc &= 0x1FFFF;
	} else {
		inc += detune;
	}
	//multiple
	if (operator->multiple) {
		inc *= operator->multiple;
	} else {
		//0.5
		inc >>= 1;
	}
	//printf("phase_inc for operator %d: %d, block: %d, fnum: %d, detune: %d, multiple: %d\n", op, inc, channel->block, channel->fnum, detune, operator->multiple);
	operator->phase_inc = inc;
}

void ym_data_write(ym2612_context * context, uint8_t value)
{
	if (context->selected_reg < 0x21 || context->selected_reg > 0xB6 || (context->selected_reg < 0x30 && context->selected_part)) {
		return;
	}
	dfprintf(debug_file, "write of %X to reg %X in part %d\n", value, context->selected_reg, context->selected_part+1);
	if (context->selected_reg < 0x30) {
		//Shared regs
		switch (context->selected_reg)
		{
		//TODO: Test reg and LFO
		case REG_TIMERA_HIGH:
			context->timer_a_load &= 0x3;
			context->timer_a_load |= value << 2;
			break;
		case REG_TIMERA_LOW:
			context->timer_a_load &= 0xFFFC;
			context->timer_a_load |= value & 0x3;
			break;
		case REG_TIMERB:
			context->timer_b_load = value;
			break;
		case REG_TIME_CTRL:
			context->timer_control = value;
			break;
		case REG_KEY_ONOFF: {
			uint8_t channel = value & 0x7;
			if (channel < NUM_CHANNELS) {
				for (uint8_t op = channel * 4, bit = 0x10; op < (channel + 1) * 4; op++, bit <<= 1) {
					if (value & bit) {
						first_key_on = 1;
						//printf("Key On for operator %d in channel %d\n", op, channel);
						context->operators[op].phase_counter = 0;
						context->operators[op].env_phase = PHASE_ATTACK;
						context->operators[op].envelope = MAX_ENVELOPE;
					} else {
						//printf("Key Off for operator %d in channel %d\n", op, channel);
						context->operators[op].env_phase = PHASE_RELEASE;
					}
				}
			}
			break;
		}
		case REG_DAC:
			if (context->dac_enable) {
				context->channels[5].output = (((int16_t)value) - 0x80) << 6;
				//printf("DAC Write %X(%d)\n", value, context->channels[5].output);
			}
			break;
		case REG_DAC_ENABLE:
			//printf("DAC Enable: %X\n", value);
			context->dac_enable = value & 0x80;
			break;
		}
	} else if (context->selected_reg < 0xA0) {
		//part
		uint8_t op = context->selected_part ? (NUM_OPERATORS/2) : 0;
		//channel in part
		if ((context->selected_reg & 0x3) != 0x3) {
			op += 4 * (context->selected_reg & 0x3) + ((context->selected_reg & 0xC) / 4);
			//printf("write targets operator %d (%d of channel %d)\n", op, op % 4, op / 4);
			ym_operator * operator = context->operators + op;
			switch (context->selected_reg & 0xF0)
			{
			case REG_DETUNE_MULT:
				operator->detune = value >> 4 & 0x7;
				operator->multiple = value & 0xF;
				ym_update_phase_inc(context, operator, op);
				break;
			case REG_TOTAL_LEVEL:
				operator->total_level = (value & 0x7F) << 5;
				break;
			case REG_ATTACK_KS:
				operator->key_scaling = 3 - (value >> 6);
				operator->rates[PHASE_ATTACK] = value & 0x1F;
				break;
			case REG_DECAY_AM:
				//TODO: AM flag for LFO
				operator->rates[PHASE_DECAY] = value & 0x1F;
				break;
			case REG_SUSTAIN_RATE:
				operator->rates[PHASE_SUSTAIN] = value & 0x1F;
				break;
			case REG_S_LVL_R_RATE:
				operator->rates[PHASE_RELEASE] = (value & 0xF) << 1 | 1;
				operator->sustain_level = value & 0xF0 << 4;
				break;
			}
		}
	} else {
		uint8_t channel = context->selected_reg & 0x3;
		if (channel != 3) {
			if (context->selected_part) {
				channel += 3;
			}
			//printf("write targets channel %d\n", channel);
			switch (context->selected_reg & 0xFC)
			{
			case REG_FNUM_LOW:
				context->channels[channel].block = context->channels[channel].block_fnum_latch >> 3 & 0x7;
				context->channels[channel].fnum = (context->channels[channel].block_fnum_latch & 0x7) << 8 | value;
				context->channels[channel].keycode = context->channels[channel].block << 2 | fnum_to_keycode[context->channels[channel].fnum >> 7];
				ym_update_phase_inc(context, context->operators + channel*4, channel*4);
				ym_update_phase_inc(context, context->operators + channel*4+1, channel*4+1);
				ym_update_phase_inc(context, context->operators + channel*4+2, channel*4+2);
				ym_update_phase_inc(context, context->operators + channel*4+3, channel*4+3);
				break;
			case REG_BLOCK_FNUM_H:{
				context->channels[channel].block_fnum_latch = value;
				break;
			}
			//TODO: Channel 3 special/CSM modes
			case REG_ALG_FEEDBACK:
				context->channels[channel].algorithm = value & 0x7;
				context->channels[channel].feedback = value >> 3 & 0x7;
				break;
			case REG_LR_AMS_PMS:
				context->channels[channel].pms = value & 0x7;
				context->channels[channel].ams = value >> 4 & 0x3;
				context->channels[channel].lr = value & 0xC0;
				//printf("Write of %X to LR_AMS_PMS reg for channel %d\n", value, channel);
				break;
			}
		}
	}
	
	context->write_cycle = context->current_cycle;
	context->status |= 0x80;
}

uint8_t ym_read_status(ym2612_context * context)
{
	return context->status;
}