view png.c @ 1971:80920c21bb52

Add an event log soft flush and call it twice per frame in between hard flushes to netplay latency when there are insufficient hardware updates to flush packets in the middle of a frame
author Michael Pavone <pavone@retrodev.com>
date Fri, 08 May 2020 11:40:30 -0700
parents 31effaadf877
children 81eebbe6b2e3
line wrap: on
line source

#include <stdint.h>
#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include "zlib/zlib.h"

static const char png_magic[] = {0x89, 'P', 'N', 'G', '\r', '\n', 0x1A, '\n'};
static const char ihdr[] = {'I', 'H', 'D', 'R'};
static const char plte[] = {'P', 'L', 'T', 'E'};
static const char idat[] = {'I', 'D', 'A', 'T'};
static const char iend[] = {'I', 'E', 'N', 'D'};

enum {
	COLOR_GRAY,
	COLOR_TRUE = 2,
	COLOR_INDEXED,
	COLOR_GRAY_ALPHA,
	COLOR_TRUE_ALPHA=6
};

static void write_chunk(FILE *f, const char*id, uint8_t *buffer, uint32_t size)
{
	uint8_t tmp[4] = {size >> 24, size >> 16, size >> 8, size};
	uint8_t warn = 0;
	warn = warn || (sizeof(tmp) != fwrite(tmp, 1, sizeof(tmp), f));
	warn = warn || (4 != fwrite(id, 1, 4, f));
	if (size) {
		warn = warn || (size != fwrite(buffer, 1, size, f));
	}
	
	uint32_t crc = crc32(0, NULL, 0);
	crc = crc32(crc, id, 4);
	if (size) {
		crc = crc32(crc, buffer, size);
	}
	tmp[0] = crc >> 24;
	tmp[1] = crc >> 16;
	tmp[2] = crc >> 8;
	tmp[3] = crc;
	warn = warn || (sizeof(tmp) != fwrite(tmp, 1, sizeof(tmp), f));
	if (warn) {
		fprintf(stderr, "Failure during write of %c%c%c%c chunk\n", id[0], id[1], id[2], id[3]);
	}
}

static void write_header(FILE *f, uint32_t width, uint32_t height, uint8_t color_type)
{
	uint8_t chunk[13] = {
		width >> 24, width >> 16, width >> 8, width,
		height >> 24, height >> 16, height >> 8, height,
		8, color_type, 0, 0, 0
	};
	if (sizeof(png_magic) != fwrite(png_magic, 1, sizeof(png_magic), f)) {
		fputs("Error writing PNG magic\n", stderr);
	}
	write_chunk(f, ihdr, chunk, sizeof(chunk));
}

void save_png24(FILE *f, uint32_t *buffer, uint32_t width, uint32_t height, uint32_t pitch)
{
	uint32_t idat_size = (1 + width*3) * height;
	uint8_t *idat_buffer = malloc(idat_size);
	uint32_t *pixel = buffer;
	uint8_t *cur = idat_buffer;
	for (uint32_t y = 0; y < height; y++)
	{
		//save filter type
		*(cur++) = 0;
		uint32_t *start = pixel;
		for (uint32_t x = 0; x < width; x++, pixel++)
		{
			uint32_t value = *pixel;
			*(cur++) = value >> 16;
			*(cur++) = value >> 8;
			*(cur++) = value;
		}
		pixel = start + pitch / sizeof(uint32_t);
	}
	write_header(f, width, height, COLOR_TRUE);
	uLongf compress_buffer_size = idat_size + 5 * (idat_size/16383 + 1) + 3;
	uint8_t *compressed = malloc(compress_buffer_size);
	compress(compressed, &compress_buffer_size, idat_buffer, idat_size);
	free(idat_buffer);
	write_chunk(f, idat, compressed, compress_buffer_size);
	write_chunk(f, iend, NULL, 0);
	free(compressed);
}

void save_png(FILE *f, uint32_t *buffer, uint32_t width, uint32_t height, uint32_t pitch)
{
	uint32_t palette[256];
	uint8_t pal_buffer[256*3];
	uint32_t num_pal = 0;
	uint32_t index_size = (1 + width) * height;
	uint8_t *index_buffer = malloc(index_size);
	uint8_t *cur = index_buffer;
	uint32_t *pixel = buffer;
	for (uint32_t y = 0; y < height; y++)
	{
		//save filter type
		*(cur++) = 0;
		uint32_t *start = pixel;
		for (uint32_t x = 0; x < width; x++, pixel++, cur++)
		{
			uint32_t value = (*pixel) & 0xFFFFFF;
			uint32_t i;
			for (i = 0; i < num_pal; i++)
			{
				if (palette[i] == value) {
					break;
				}
			}
			if (i == num_pal) {
				if (num_pal == 256) {
					free(index_buffer);
					save_png24(f, buffer, width, height, pitch);
					return;
				}
				palette[i] = value;
				num_pal++;
			}
			*cur = i;
		}
		pixel = start + pitch / sizeof(uint32_t);
	}
	write_header(f, width, height, COLOR_INDEXED);
	cur = pal_buffer;
	for (uint32_t i = 0; i < num_pal; i++)
	{
		*(cur++) = palette[i] >> 16;
		*(cur++) = palette[i] >> 8;
		*(cur++) = palette[i];
	}
	write_chunk(f, plte, pal_buffer, num_pal * 3);
	uLongf compress_buffer_size = index_size + 5 * (index_size/16383 + 1) + 3;
	uint8_t *compressed = malloc(compress_buffer_size);
	compress(compressed, &compress_buffer_size, index_buffer, index_size);
	free(index_buffer);
	write_chunk(f, idat, compressed, compress_buffer_size);
	write_chunk(f, iend, NULL, 0);
	free(compressed);
}

typedef uint8_t (*filter_fun)(uint8_t *cur, uint8_t *last, uint8_t bpp, uint32_t x);
typedef uint32_t (*pixel_fun)(uint8_t **cur, uint8_t **last, uint8_t bpp, uint32_t x, filter_fun);

static uint8_t filter_none(uint8_t *cur, uint8_t *last, uint8_t bpp, uint32_t x)
{
	return *cur;
}

static uint8_t filter_sub(uint8_t *cur, uint8_t *last, uint8_t bpp, uint32_t x)
{
	if (x) {
		return *cur + *(cur - bpp);
	} else {
		return *cur;
	}
}

static uint8_t filter_up(uint8_t *cur, uint8_t *last, uint8_t bpp, uint32_t x)
{
	if (last) {
		return *cur + *last;
	} else {
		return *cur;
	}
}

static uint8_t filter_avg(uint8_t *cur, uint8_t *last, uint8_t bpp, uint32_t x)
{
	uint8_t prev = x ? *(cur - bpp) : 0;
	uint8_t prior = last ? *last : 0;
	return *cur + ((prev + prior) >> 1);
}

static uint8_t paeth(uint8_t a, uint8_t b, uint8_t c)
{
	int32_t p = a + b - c;
	int32_t pa = abs(p - a);
	int32_t pb = abs(p - b);
	int32_t pc = abs(p - c);
	if (pa <= pb && pa <= pc) {
		return a;
	}
	if (pb <= pc) {
		return b;
	}
	return c;
}

static uint8_t filter_paeth(uint8_t *cur, uint8_t *last, uint8_t bpp, uint32_t x)
{
	uint8_t prev, prev_prior;
	if (x) {
		prev = *(cur - bpp);
		prev_prior = *(last - bpp);
	} else {
		prev = prev_prior = 0;
	}
	uint8_t prior = last ? *last : 0;
	return *cur + paeth(prev, prior, prev_prior);
}

static uint32_t pixel_gray(uint8_t **cur, uint8_t **last, uint8_t bpp, uint32_t x, filter_fun filter)
{
	uint8_t value = filter(*cur, *last, bpp, x);
	(*cur)++;
	if (*last) {
		(*last)++;
	}
	return 0xFF000000 | value << 16 | value << 8 | value;
}

static uint32_t pixel_true(uint8_t **cur, uint8_t **last, uint8_t bpp, uint32_t x, filter_fun filter)
{
	uint8_t red = filter(*cur, *last, bpp, x);
	(*cur)++;
	if (*last) {
		(*last)++;
	}
	uint8_t green = filter(*cur, *last, bpp, x);
	(*cur)++;
	if (*last) {
		(*last)++;
	}
	uint8_t blue = filter(*cur, *last, bpp, x);
	(*cur)++;
	if (*last) {
		(*last)++;
	}
	return 0xFF000000 | red << 16 | green << 8 | blue;
}

static uint32_t pixel_gray_alpha(uint8_t **cur, uint8_t **last, uint8_t bpp, uint32_t x, filter_fun filter)
{
	uint8_t value = filter(*cur, *last, bpp, x);
	(*cur)++;
	if (*last) {
		(*last)++;
	}
	uint8_t alpha = filter(*cur, *last, bpp, x);
	(*cur)++;
	if (*last) {
		(*last)++;
	}
	return alpha << 24 | value << 16 | value << 8 | value;
}

static uint32_t pixel_true_alpha(uint8_t **cur, uint8_t **last, uint8_t bpp, uint32_t x, filter_fun filter)
{
	uint8_t red = filter(*cur, *last, bpp, x);
	(*cur)++;
	if (*last) {
		(*last)++;
	}
	uint8_t green = filter(*cur, *last, bpp, x);
	(*cur)++;
	if (*last) {
		(*last)++;
	}
	uint8_t blue = filter(*cur, *last, bpp, x);
	(*cur)++;
	if (*last) {
		(*last)++;
	}
	uint8_t alpha = filter(*cur, *last, bpp, x);
	(*cur)++;
	if (*last) {
		(*last)++;
	}
	return alpha << 24 | red << 16 | green << 8 | blue;
}

static filter_fun filters[] = {filter_none, filter_sub, filter_up, filter_avg, filter_paeth};

#define MIN_CHUNK_SIZE 12
#define MIN_IHDR_SIZE 0xD
#define MAX_SUPPORTED_DIM 32767 //chosen to avoid possibility of overflow when calculating uncompressed size
uint32_t *load_png(uint8_t *buffer, uint32_t buf_size, uint32_t *width, uint32_t *height)
{
	if (buf_size < sizeof(png_magic) || memcmp(buffer, png_magic, sizeof(png_magic))) {
		return NULL;
	}
	uint32_t cur = sizeof(png_magic);
	uint8_t has_header = 0;
	uint8_t bits, color_type, comp_type, filter_type, interlace;
	uint8_t *idat_buf = NULL;
	uint8_t idat_needs_free = 0;
	uint32_t idat_size;
	uint32_t *out = NULL;
	uint32_t *palette = NULL;
	while(cur + MIN_CHUNK_SIZE <= buf_size)
	{
		uint32_t chunk_size = buffer[cur++] << 24;
		chunk_size |=  buffer[cur++] << 16;
		chunk_size |=  buffer[cur++] << 8;
		chunk_size |=  buffer[cur++];
		if (!memcmp(ihdr, buffer + cur, sizeof(ihdr))) {
			if (chunk_size < MIN_IHDR_SIZE || cur + MIN_IHDR_SIZE > buf_size) {
				return NULL;
			}
			cur += sizeof(ihdr);
			*width = buffer[cur++] << 24;
			*width |=  buffer[cur++] << 16;
			*width |=  buffer[cur++] << 8;
			*width |=  buffer[cur++];
			*height = buffer[cur++] << 24;
			*height |=  buffer[cur++] << 16;
			*height |=  buffer[cur++] << 8;
			*height |=  buffer[cur++];
			if (*width > MAX_SUPPORTED_DIM || *height > MAX_SUPPORTED_DIM) {
				return NULL;
			}
			bits = buffer[cur++];
			if (bits != 8) {
				//only support 8-bits per element for now
				return NULL;
			}
			color_type = buffer[cur++];
			if (color_type > COLOR_TRUE_ALPHA || color_type == 1 || color_type == 5) {
				//reject invalid color type
				return NULL;
			}
			comp_type = buffer[cur++];
			if (comp_type) {
				//only compression type 0 is defined by the spec
				return NULL;
			}
			filter_type = buffer[cur++];
			interlace = buffer[cur++];
			if (interlace) {
				//interlacing not supported for now
				return NULL;
			}
			cur += chunk_size - MIN_IHDR_SIZE;
			has_header = 1;
		} else {
			if (!has_header) {
				//IHDR is required to be the first chunk, fail if it isn't
				break;
			}
			if (!memcmp(plte, buffer + cur, sizeof(plte))) {
				//TODO: implement paletted images
			} else if (!memcmp(idat, buffer + cur, sizeof(idat))) {
				cur += sizeof(idat);
				if (idat_buf) {
					if (idat_needs_free) {
						idat_buf = realloc(idat_buf, idat_size + chunk_size);
					} else {
						uint8_t *tmp = idat_buf;
						idat_buf = malloc(idat_size + chunk_size);
						memcpy(idat_buf, tmp, idat_size);
					}
					memcpy(idat_buf + idat_size, buffer + cur, chunk_size);
					idat_size += chunk_size;
				} else {
					idat_buf = buffer + cur;
					idat_size = chunk_size;
				}
				cur += chunk_size;
			} else if (!memcmp(iend, buffer + cur, sizeof(iend))) {
				if (!idat_buf) {
					break;
				}
				if (!palette && color_type == COLOR_INDEXED) {
					//indexed color, but no PLTE chunk found
					return NULL;
				}
				uLongf uncompressed_size = *width * *height;
				uint8_t bpp;
				pixel_fun pixel;
				switch (color_type)
				{
				case COLOR_GRAY:
					uncompressed_size *= bits / 8;
					bpp = bits/8;
					pixel = pixel_gray;
					break;
				case COLOR_TRUE:
					uncompressed_size *= 3 * bits / 8;
					bpp = 3 * bits/8;
					pixel = pixel_true;
					break;
				case COLOR_INDEXED: {
					uint32_t pixels_per_byte = 8 / bits;
					uncompressed_size = (*width / pixels_per_byte) * *height;
					if (*width % pixels_per_byte) {
						uncompressed_size += *height;
					}
					bpp = 1;
					break;
				}
				case COLOR_GRAY_ALPHA:
					uncompressed_size *= bits / 4;
					bpp = bits / 4;
					pixel = pixel_gray_alpha;
					break;
				case COLOR_TRUE_ALPHA:
					uncompressed_size *= bits / 2;
					bpp = bits / 2;
					pixel = pixel_true_alpha;
					break;
				}
				//add filter type byte
				uncompressed_size += *height;
				uint8_t *decomp_buffer = malloc(uncompressed_size);
				if (Z_OK != uncompress(decomp_buffer, &uncompressed_size, idat_buf, idat_size)) {
					free(decomp_buffer);
					break;
				}
				out = calloc(*width * *height, sizeof(uint32_t));
				uint32_t *cur_pixel = out;
				uint8_t *cur_byte = decomp_buffer;
				uint8_t *last_line = NULL;
				for (uint32_t y = 0; y < *height; y++)
				{
					uint8_t filter_type = *(cur_byte++);
					if (filter_type >= sizeof(filters)/sizeof(*filters)) {
						free(out);
						out = NULL;
						free(decomp_buffer);
						break;
					}
					filter_fun filter = filters[filter_type];
					uint8_t *line_start = cur_byte;
					for (uint32_t x = 0; x < *width; x++)
					{
						*(cur_pixel++) = pixel(&cur_byte, &last_line, bpp, x, filter);
					}
					last_line = line_start;
				}
				free(decomp_buffer);
			} else {
				//skip uncrecognized chunks
				cur += 4 + chunk_size;
			}
		}
		//skip CRC for now
		cur += sizeof(uint32_t);
	}
	if (idat_needs_free) {
		free(idat_buf);
	}
	free(palette);
	return out;
}