view xband.c @ 1971:80920c21bb52

Add an event log soft flush and call it twice per frame in between hard flushes to netplay latency when there are insufficient hardware updates to flush packets in the middle of a frame
author Michael Pavone <pavone@retrodev.com>
date Fri, 08 May 2020 11:40:30 -0700
parents 17c1c30e0d6f
children
line wrap: on
line source

#include <stdlib.h>
#include <stddef.h>
#include <string.h>
#include "romdb.h"
#include "genesis.h"
#include "tern.h"
#include "xband.h"
#include "util.h"

#define BIT_ROM_HI 4

enum {
	PATCH0_LOW,
	PATCH0_MID,
	PATCH0_HI,
	PATCH1_LOW=4,
	PATCH1_MID,
	PATCH1_HI,
	PATCH2_LOW=8,
	PATCH2_MID,
	PATCH2_HI,
	PATCH3_LOW=12,
	PATCH3_MID,
	PATCH3_HI,
	PATCH4_LOW=16,
	PATCH4_MID,
	PATCH4_HI,
	PATCH5_LOW=20,
	PATCH5_MID,
	PATCH5_HI,
	PATCH6_LOW=24,
	PATCH6_MID,
	PATCH6_HI,
	PATCH7_LOW=28,
	PATCH7_MID,
	PATCH7_HI,
	PATCH8_LOW=32,
	PATCH8_MID,
	PATCH8_HI,
	PATCH9_LOW=36,
	PATCH9_MID,
	PATCH9_HI,
	PATCH10_LOW=40,
	PATCH10_MID,
	PATCH10_HI,
	RANGE0_START_LOW=44,
	RANGE0_START_MID,
	RANGE0_START_HI,
	RANGE1_START=48,
	RANGE1_START_MID,
	RANGE1_START_HI,
	MAGIC_LOW=56,
	MAGIC_MID,
	MAGIC_HI,
	RANGE0_END_LOW=64,
	RANGE0_END_MID,
	RANGE0_END_HI,
	RANGE1_END_LOW=68,
	RANGE1_END_MID,
	RANGE1_END_HI,
	RANGE0_DEST_LOW=80,
	RANGE0_DEST_HI,
	RANGE0_MASK,
	RANGE1_DEST_LOW=84,
	RANGE1_DEST_HI,
	RANGE1_MASK,
	
	MORE_MYSTERY=219,
	UNKNOWN_REG=221,
	UNKNOWN_REG2,
	UNKNOWN_REG3,
	
};

//#define DO_DEBUG_PRINT
#ifdef DO_DEBUG_PRINT
#define dprintf printf
#define dputs puts
#else
#define dprintf
#define dputs
#endif

uint8_t xband_detect(uint8_t *rom, uint32_t rom_size)
{
	if (rom_size < 0x200) {
		return 0;
	} 
	
	//product ID is all NULL
	for (int i = GAME_ID_OFF; i <= (GAME_ID_OFF + GAME_ID_LEN); i++)
	{
		if (rom[i]) {
			return 0;
		}
	}
	
	if (!memcmp(rom+8, "DAVE", 4)) {
		//XBAND test roms
		return 1;
	}
	
	//Internal ROM is 512KB, accept larger ones for overdumps and custom firmware
	if (rom_size < (512*1024)) {
		return 0;
	}
	
	//ROM has no standard header, but does have a jump at $100
	if (rom[0x100] != 0x4E || rom[0x101] != 0xF9) {
		return 0;
	}
	
	
	return 1;
}

static xband *get_xband(genesis_context *gen)
{
	if (!gen->extra) {
		gen->extra = gen->m68k->options->gen.memmap[0].buffer;
		gen->m68k->mem_pointers[2] = (uint16_t *)gen->save_storage;
	}
	return gen->extra;
}

static void update_control(genesis_context *gen, uint8_t value)
{
	xband *x = gen->extra;
	if ((x->control ^ value) & BIT_ROM_HI) {
		if (value & BIT_ROM_HI) {
			gen->m68k->mem_pointers[0] = (uint16_t *)gen->save_storage;
			gen->m68k->mem_pointers[1] = NULL;
			gen->m68k->mem_pointers[2] = gen->cart;
			gen->m68k->mem_pointers[3] = x->cart_space - 0x100000;
		} else {
			gen->m68k->mem_pointers[0] = x->cart_space;
			gen->m68k->mem_pointers[1] = x->cart_space;
			gen->m68k->mem_pointers[2] = (uint16_t *)gen->save_storage;
			gen->m68k->mem_pointers[3] = NULL;
		}
		m68k_invalidate_code_range(gen->m68k, 0, 0x3BC000);
	}
	x->control = value;
}

static void *xband_write_b(uint32_t address, void *context, uint8_t value)
{
	m68k_context *m68k = context;
	genesis_context *gen = m68k->system;
	xband *x = get_xband(gen);
	if (address == 0x181) {
		x->kill = value;
		dprintf("Write to \"soft\" kill register %X\n", value);
	} else if (address == 0x183) {
		update_control(gen, value);
		dprintf("Write to \"soft\" control register %X\n", value);
	} else if ((x->control & BIT_ROM_HI && address < 0x200000) || (address >= 0x200000 && !(x->control & BIT_ROM_HI))) {
		gen->save_storage[(address & 0xFFFF) ^ 1] = value;
		m68k_handle_code_write(address, m68k);
		//TODO: handle code at mirror addresses
	} else {
		printf("Unhandled write to cartridge area %X: %X\n", address, value);
	}
	return context;
}

static void *xband_write_hi_b(uint32_t address, void *context, uint8_t value)
{
	return xband_write_b(address | 0x200000, context, value);
}

static void *xband_write_w(uint32_t address, void *context, uint16_t value)
{
	m68k_context *m68k = context;
	genesis_context *gen = m68k->system;
	xband *x = get_xband(gen);
	if (address == 0x180 || address == 0x182) {
		return xband_write_b(address | 1, context, value);
	} else if ((x->control & BIT_ROM_HI && address < 0x200000) || (address >= 0x200000 && !(x->control & BIT_ROM_HI))) {
		gen->save_storage[address & 0xFFFE] = value;
		gen->save_storage[(address & 0xFFFE) | 1] = value >> 8;
		m68k_handle_code_write(address, m68k);
		//TODO: handle code at mirror addresses
		return context;
	}
	printf("Unhandled write to %X: %X\n", address, value);
	return context;
}

static void *xband_write_hi_w(uint32_t address, void *context, uint16_t value)
{
	return xband_write_w(address | 0x200000, context, value);
}

static uint16_t xband_read_w(uint32_t address, void *context)
{
	m68k_context *m68k = context;
	genesis_context *gen = m68k->system;
	xband *x = get_xband(gen);
	//TODO: actually do something intelligent here
	return x->cart_space[address >> 1];
}

static uint16_t xband_read_hi_w(uint32_t address, void *context)
{
	return xband_read_w(address | 0x200000, context);
}

static uint8_t xband_read_b(uint32_t address, void *context)
{
	uint16_t val = xband_read_w(address, context);
	return address & 1 ? val : val >> 8;
}

static uint8_t xband_read_hi_b(uint32_t address, void *context)
{
	return xband_read_b(address | 0x200000, context);
}

static void *xband_reg_write_b(uint32_t address, void *context, uint8_t value)
{
	m68k_context *m68k = context;
	genesis_context *gen = m68k->system;
	if (!(address & 1)) {
		printf("Ignoring write to even address %X: %X\n", address, value);
		return context;
	}
	xband *x = get_xband(gen);
	if (address < 0x3BFE00) {
		uint32_t offset = (address - 0x3BC001) / 2;
		if (offset < XBAND_REGS) {
			switch (offset)
			{
			case MORE_MYSTERY:
			case UNKNOWN_REG:
				dprintf("Write to mysterious reg: %X: %X\n", address, value);
				value = value & 0x7F;
				break;
			case UNKNOWN_REG3:
				dprintf("Write to mysterious reg: %X: %X\n", address, value);
				value = value & 0xFE;
				break;
			}
			x->regs[offset] = value;
			dprintf("Write to register %X(%d): %X\n", address, offset, value);
		} else {
			printf("Unhandled register write %X: %X\n", address, value);
		}
	} else {
		if (address == 0x3BFE01) {
			x->kill = value;
			dprintf("Write to kill register %X\n", value);
		} else if (address == 0x3BFE03) {
			update_control(gen, value);
			dprintf("Write to control register %X\n", value);
		} else {
			printf("Unhandled register write %X: %X\n", address, value);
		}
	}
	return context;
}

static void *xband_reg_write_w(uint32_t address, void *context, uint16_t value)
{
	return xband_reg_write_b(address | 1, context, value);
}

static uint8_t xband_reg_read_b(uint32_t address, void *context)
{
	m68k_context *m68k = context;
	genesis_context *gen = m68k->system;
	if (!(address & 1)) {
		printf("Read from even address %X\n", address);
		return gen->header.get_open_bus_value(&gen->header) >> 8;
	}
	xband *x = get_xband(gen);
	if (address < 0x3BFE00) {
		uint32_t offset = (address - 0x3BC001) / 2;
		if (offset < XBAND_REGS) {
			dprintf("Regsister read: %X\n", address);
			return x->regs[offset];
		} else {
			printf("Unhandled register read from address %X\n", address);
			return 0x5D;
		}
	} else {
		if (address == 0x3BFE01) {
			return x->kill;
		} else if (address == 0x3BFE03) {
			return x->control;
		} else {
			printf("Unhandled register read from address %X\n", address);
			return 0x5D;
		}
	}
}

static uint16_t xband_reg_read_w(uint32_t address, void *context)
{
	m68k_context *m68k = context;
	genesis_context *gen = m68k->system;
	uint16_t value = xband_reg_read_b(address | 1, context);
	value |= gen->header.get_open_bus_value(&gen->header) & 0xFF00;
	return value;
}

void xband_serialize(genesis_context *gen, serialize_buffer *buf)
{
	xband *x = get_xband(gen);
	save_int8(buf, x->kill);
	save_int8(buf, x->control);
	save_buffer8(buf, x->regs, XBAND_REGS);
}

void xband_deserialize(deserialize_buffer *buf, genesis_context *gen)
{
	xband *x = get_xband(gen);
	x->kill = load_int8(buf);
	update_control(gen, load_int8(buf));
	for (int i = 0; i < XBAND_REGS; i++)
	{
		xband_write_b(0x3BC001 + i*2, gen->m68k, load_int8(buf));
	}
}

rom_info xband_configure_rom(tern_node *rom_db, void *rom, uint32_t rom_size, void *lock_on, uint32_t lock_on_size, memmap_chunk const *base_map, uint32_t base_chunks)
{
	rom_info info;
	if (lock_on && lock_on_size) {
		rom_info lock_on_info = configure_rom(rom_db, lock_on, lock_on_size, NULL, 0, base_map, base_chunks);
		info.name = alloc_concat("XBAND - ", lock_on_info.name);
		info.regions = lock_on_info.regions;
		free_rom_info(&lock_on_info);
	} else {
		info.name = strdup("XBAND");
		info.regions = REGION_J|REGION_U|REGION_E;
	}
	info.save_size = 64*1024;
	info.save_buffer = malloc(info.save_size);
	info.save_mask = info.save_size-1;
	info.save_type = RAM_FLAG_BOTH;
	info.port1_override = info.ext_override = info.mouse_mode = NULL;
	info.port2_override = strdup("xband keyboard");
	info.eeprom_map = NULL;
	info.num_eeprom = 0;
	info.rom = rom;
	info.rom_size = rom_size;
	info.is_save_lock_on = 0;
	xband *x = calloc(sizeof(xband), 1);
	rom_size = nearest_pow2(rom_size);
	for (int i = 0; (i + rom_size) <= sizeof(x->cart_space) / 2; i += rom_size)
	{
		memcpy(x->cart_space + i/2, rom, rom_size);
	}
	if (lock_on && lock_on_size >= 0x200) {
		memcpy(x->cart_space + 0x80, ((uint16_t *)lock_on) + 0x80, 0x100);
	}
	//observed power on values
	memset(x->regs, 0, sizeof(x->regs));
	x->regs[0x7C] = 0;
	x->regs[0x7D] = 0x80;
	x->regs[0xB4] = 0x7F;
	x->regs[UNKNOWN_REG2] = 8;
	
	byteswap_rom(0x400000, x->cart_space);
	
	info.mapper_type = MAPPER_XBAND;
	info.map_chunks = base_chunks + 5;
	info.map = calloc(sizeof(memmap_chunk), info.map_chunks);
	info.map[0].mask = 0xFFFFFF;
	info.map[0].aux_mask = 0xFFFFFF;
	info.map[0].flags = MMAP_READ|MMAP_CODE|MMAP_PTR_IDX|MMAP_FUNC_NULL|MMAP_AUX_BUFF;
	info.map[0].start = 0;
	info.map[0].end = 0x10000;
	info.map[0].ptr_index = 0;
	info.map[0].buffer = x->cart_space;
	info.map[0].write_16 = xband_write_w;
	info.map[0].write_8 = xband_write_b;
	info.map[0].read_16 = xband_read_w;
	info.map[0].read_8 = xband_read_b;
	info.map[1].mask = 0xFFFFFF;
	info.map[1].aux_mask = 0xFFFFFF;
	info.map[1].flags = MMAP_READ|MMAP_CODE|MMAP_PTR_IDX|MMAP_FUNC_NULL|MMAP_AUX_BUFF;
	info.map[1].start = 0x10000;
	info.map[1].end = 0x200000;
	info.map[1].ptr_index = 1;
	info.map[1].buffer = x->cart_space;
	info.map[1].write_16 = xband_write_w;
	info.map[1].write_8 = xband_write_b;
	info.map[1].read_16 = xband_read_w;
	info.map[1].read_8 = xband_read_b;
	info.map[2].mask = 0xFFFF;
	info.map[2].aux_mask = 0xFFFF;
	info.map[2].flags = MMAP_READ|MMAP_CODE|MMAP_PTR_IDX|MMAP_FUNC_NULL;
	info.map[2].start = 0x200000;
	info.map[2].end = 0x210000;
	info.map[2].ptr_index = 2;
	info.map[2].buffer = NULL;
	info.map[2].write_16 = xband_write_hi_w;
	info.map[2].write_8 = xband_write_hi_b;
	info.map[2].read_16 = xband_read_hi_w;
	info.map[2].read_8 = xband_read_hi_b;
	info.map[3].mask = 0xFFFFFF;
	info.map[3].aux_mask = 0xFFFFFF;
	info.map[3].flags = MMAP_READ|MMAP_CODE|MMAP_PTR_IDX|MMAP_FUNC_NULL;
	info.map[3].start = 0x210000;
	info.map[3].end = 0x3BC000;
	info.map[3].ptr_index = 3;
	info.map[3].buffer = NULL;
	info.map[3].write_16 = xband_write_w;
	info.map[3].write_8 = xband_write_b;
	info.map[3].read_16 = xband_read_w;
	info.map[3].read_8 = xband_read_b;
	info.map[4].mask = 0xFFFFFF;
	info.map[4].flags = MMAP_READ|MMAP_CODE|MMAP_PTR_IDX|MMAP_FUNC_NULL;
	info.map[4].start = 0x3BC000;
	info.map[4].end = 0x3C0000;
	info.map[4].ptr_index = 4;
	info.map[4].write_16 = xband_reg_write_w;
	info.map[4].write_8 = xband_reg_write_b;
	info.map[4].read_16 = xband_reg_read_w;
	info.map[4].read_8 = xband_reg_read_b;
	memcpy(info.map + 5, base_map, base_chunks * sizeof(memmap_chunk));
	
	return info;
}