Mercurial > repos > blastem
view m68k_core_x86.c @ 600:a9dcaacdc0c5
Add Z80 test runner Python script I wrote a while back and forgot to commit
author | Michael Pavone <pavone@retrodev.com> |
---|---|
date | Fri, 26 Dec 2014 13:42:25 -0800 |
parents | 9853bcce4729 |
children | f0061e3d2ad9 |
line wrap: on
line source
/* Copyright 2013 Michael Pavone This file is part of BlastEm. BlastEm is free software distributed under the terms of the GNU General Public License version 3 or greater. See COPYING for full license text. */ #include "gen_x86.h" #include "m68k_core.h" #include "m68k_internal.h" #include "68kinst.h" #include "mem.h" #include "backend.h" #include <stdio.h> #include <stddef.h> #include <stdlib.h> #include <string.h> #define CYCLES RAX #define LIMIT RBP #define CONTEXT RSI #define SCRATCH1 RCX #ifdef X86_64 #define SCRATCH2 RDI #else #define SCRATCH2 RBX #endif enum { FLAG_X, FLAG_N, FLAG_Z, FLAG_V, FLAG_C }; void set_flag(m68k_options * opts, uint8_t val, uint8_t flag) { if (opts->flag_regs[flag] >= 0) { mov_ir(&opts->gen.code, val, opts->flag_regs[flag], SZ_B); } else { int8_t offset = offsetof(m68k_context, flags) + flag; if (offset) { mov_irdisp(&opts->gen.code, val, opts->gen.context_reg, offset, SZ_B); } else { mov_irind(&opts->gen.code, val, opts->gen.context_reg, SZ_B); } } } void set_flag_cond(m68k_options *opts, uint8_t cond, uint8_t flag) { if (opts->flag_regs[flag] >= 0) { setcc_r(&opts->gen.code, cond, opts->flag_regs[flag]); } else { int8_t offset = offsetof(m68k_context, flags) + flag; if (offset) { setcc_rdisp(&opts->gen.code, cond, opts->gen.context_reg, offset); } else { setcc_rind(&opts->gen.code, cond, opts->gen.context_reg); } } } void check_flag(m68k_options *opts, uint8_t flag) { if (opts->flag_regs[flag] >= 0) { cmp_ir(&opts->gen.code, 0, opts->flag_regs[flag], SZ_B); } else { cmp_irdisp(&opts->gen.code, 0, opts->gen.context_reg, offsetof(m68k_context, flags) + flag, SZ_B); } } void flag_to_reg(m68k_options *opts, uint8_t flag, uint8_t reg) { if (opts->flag_regs[flag] >= 0) { mov_rr(&opts->gen.code, opts->flag_regs[flag], reg, SZ_B); } else { int8_t offset = offsetof(m68k_context, flags) + flag; if (offset) { mov_rdispr(&opts->gen.code, opts->gen.context_reg, offset, reg, SZ_B); } else { mov_rindr(&opts->gen.code, opts->gen.context_reg, reg, SZ_B); } } } void reg_to_flag(m68k_options *opts, uint8_t reg, uint8_t flag) { if (opts->flag_regs[flag] >= 0) { mov_rr(&opts->gen.code, reg, opts->flag_regs[flag], SZ_B); } else { int8_t offset = offsetof(m68k_context, flags) + flag; if (offset) { mov_rrdisp(&opts->gen.code, reg, opts->gen.context_reg, offset, SZ_B); } else { mov_rrind(&opts->gen.code, reg, opts->gen.context_reg, SZ_B); } } } void flag_to_flag(m68k_options *opts, uint8_t flag1, uint8_t flag2) { code_info *code = &opts->gen.code; if (opts->flag_regs[flag1] >= 0 && opts->flag_regs[flag2] >= 0) { mov_rr(code, opts->flag_regs[flag1], opts->flag_regs[flag2], SZ_B); } else if(opts->flag_regs[flag1] >= 0) { mov_rrdisp(code, opts->flag_regs[flag1], opts->gen.context_reg, offsetof(m68k_context, flags) + flag2, SZ_B); } else if (opts->flag_regs[flag2] >= 0) { mov_rdispr(code, opts->gen.context_reg, offsetof(m68k_context, flags) + flag1, opts->flag_regs[flag2], SZ_B); } else { push_r(code, opts->gen.scratch1); mov_rdispr(code, opts->gen.context_reg, offsetof(m68k_context, flags) + flag1, opts->gen.scratch1, SZ_B); mov_rrdisp(code, opts->gen.scratch1, opts->gen.context_reg, offsetof(m68k_context, flags) + flag2, SZ_B); pop_r(code, opts->gen.scratch1); } } void update_flags(m68k_options *opts, uint32_t update_mask) { uint8_t native_flags[] = {0, CC_S, CC_Z, CC_O, CC_C}; for (int8_t flag = FLAG_C; flag >= FLAG_X; --flag) { if (update_mask & X0 << (flag*3)) { set_flag(opts, 0, flag); } else if(update_mask & X1 << (flag*3)) { set_flag(opts, 1, flag); } else if(update_mask & X << (flag*3)) { if (flag == FLAG_X) { if (opts->flag_regs[FLAG_C] >= 0 || !(update_mask & (C0|C1|C))) { flag_to_flag(opts, FLAG_C, FLAG_X); } else if(update_mask & C0) { set_flag(opts, 0, flag); } else if(update_mask & C1) { set_flag(opts, 1, flag); } else { set_flag_cond(opts, CC_C, flag); } } else { set_flag_cond(opts, native_flags[flag], flag); } } } } void flag_to_carry(m68k_options * opts, uint8_t flag) { if (opts->flag_regs[flag] >= 0) { bt_ir(&opts->gen.code, 0, opts->flag_regs[flag], SZ_B); } else { bt_irdisp(&opts->gen.code, 0, opts->gen.context_reg, offsetof(m68k_context, flags) + flag, SZ_B); } } void or_flag_to_reg(m68k_options *opts, uint8_t flag, uint8_t reg) { if (opts->flag_regs[flag] >= 0) { or_rr(&opts->gen.code, opts->flag_regs[flag], reg, SZ_B); } else { or_rdispr(&opts->gen.code, opts->gen.context_reg, offsetof(m68k_context, flags) + flag, reg, SZ_B); } } void xor_flag_to_reg(m68k_options *opts, uint8_t flag, uint8_t reg) { if (opts->flag_regs[flag] >= 0) { xor_rr(&opts->gen.code, opts->flag_regs[flag], reg, SZ_B); } else { xor_rdispr(&opts->gen.code, opts->gen.context_reg, offsetof(m68k_context, flags) + flag, reg, SZ_B); } } void xor_flag(m68k_options *opts, uint8_t val, uint8_t flag) { if (opts->flag_regs[flag] >= 0) { xor_ir(&opts->gen.code, val, opts->flag_regs[flag], SZ_B); } else { xor_irdisp(&opts->gen.code, val, opts->gen.context_reg, offsetof(m68k_context, flags) + flag, SZ_B); } } void cmp_flags(m68k_options *opts, uint8_t flag1, uint8_t flag2) { code_info *code = &opts->gen.code; if (opts->flag_regs[flag1] >= 0 && opts->flag_regs[flag2] >= 0) { cmp_rr(code, opts->flag_regs[flag1], opts->flag_regs[flag2], SZ_B); } else if(opts->flag_regs[flag1] >= 0 || opts->flag_regs[flag2] >= 0) { if (opts->flag_regs[flag2] >= 0) { uint8_t tmp = flag1; flag1 = flag2; flag2 = tmp; } cmp_rrdisp(code, opts->flag_regs[flag1], opts->gen.context_reg, offsetof(m68k_context, flags) + flag2, SZ_B); } else { mov_rdispr(code, opts->gen.context_reg, offsetof(m68k_context, flags) + flag1, opts->gen.scratch1, SZ_B); cmp_rrdisp(code, opts->gen.scratch1, opts->gen.context_reg, offsetof(m68k_context, flags) + flag2, SZ_B); } } void areg_to_native(m68k_options *opts, uint8_t reg, uint8_t native_reg) { if (opts->aregs[reg] >= 0) { mov_rr(&opts->gen.code, opts->aregs[reg], native_reg, SZ_D); } else { mov_rdispr(&opts->gen.code, opts->gen.context_reg, areg_offset(reg), native_reg, SZ_D); } } void dreg_to_native(m68k_options *opts, uint8_t reg, uint8_t native_reg) { if (opts->dregs[reg] >= 0) { mov_rr(&opts->gen.code, opts->dregs[reg], native_reg, SZ_D); } else { mov_rdispr(&opts->gen.code, opts->gen.context_reg, dreg_offset(reg), native_reg, SZ_D); } } void areg_to_native_sx(m68k_options *opts, uint8_t reg, uint8_t native_reg) { if (opts->aregs[reg] >= 0) { movsx_rr(&opts->gen.code, opts->aregs[reg], native_reg, SZ_W, SZ_D); } else { movsx_rdispr(&opts->gen.code, opts->gen.context_reg, areg_offset(reg), native_reg, SZ_W, SZ_D); } } void dreg_to_native_sx(m68k_options *opts, uint8_t reg, uint8_t native_reg) { if (opts->dregs[reg] >= 0) { movsx_rr(&opts->gen.code, opts->dregs[reg], native_reg, SZ_W, SZ_D); } else { movsx_rdispr(&opts->gen.code, opts->gen.context_reg, dreg_offset(reg), native_reg, SZ_W, SZ_D); } } void native_to_areg(m68k_options *opts, uint8_t native_reg, uint8_t reg) { if (opts->aregs[reg] >= 0) { mov_rr(&opts->gen.code, native_reg, opts->aregs[reg], SZ_D); } else { mov_rrdisp(&opts->gen.code, native_reg, opts->gen.context_reg, areg_offset(reg), SZ_D); } } void native_to_dreg(m68k_options *opts, uint8_t native_reg, uint8_t reg) { if (opts->dregs[reg] >= 0) { mov_rr(&opts->gen.code, native_reg, opts->dregs[reg], SZ_D); } else { mov_rrdisp(&opts->gen.code, native_reg, opts->gen.context_reg, dreg_offset(reg), SZ_D); } } void ldi_areg(m68k_options *opts, int32_t value, uint8_t reg) { if (opts->aregs[reg] >= 0) { mov_ir(&opts->gen.code, value, opts->aregs[reg], SZ_D); } else { mov_irdisp(&opts->gen.code, value, opts->gen.context_reg, areg_offset(reg), SZ_D); } } void ldi_native(m68k_options *opts, int32_t value, uint8_t reg) { mov_ir(&opts->gen.code, value, reg, SZ_D); } void addi_native(m68k_options *opts, int32_t value, uint8_t reg) { add_ir(&opts->gen.code, value, reg, SZ_D); } void subi_native(m68k_options *opts, int32_t value, uint8_t reg) { sub_ir(&opts->gen.code, value, reg, SZ_D); } void push_native(m68k_options *opts, uint8_t reg) { push_r(&opts->gen.code, reg); } void pop_native(m68k_options *opts, uint8_t reg) { pop_r(&opts->gen.code, reg); } void sign_extend16_native(m68k_options *opts, uint8_t reg) { movsx_rr(&opts->gen.code, reg, reg, SZ_W, SZ_D); } void addi_areg(m68k_options *opts, int32_t val, uint8_t reg) { if (opts->aregs[reg] >= 0) { add_ir(&opts->gen.code, val, opts->aregs[reg], SZ_D); } else { add_irdisp(&opts->gen.code, val, opts->gen.context_reg, areg_offset(reg), SZ_D); } } void subi_areg(m68k_options *opts, int32_t val, uint8_t reg) { if (opts->aregs[reg] >= 0) { sub_ir(&opts->gen.code, val, opts->aregs[reg], SZ_D); } else { sub_irdisp(&opts->gen.code, val, opts->gen.context_reg, areg_offset(reg), SZ_D); } } void add_areg_native(m68k_options *opts, uint8_t reg, uint8_t native_reg) { if (opts->aregs[reg] >= 0) { add_rr(&opts->gen.code, opts->aregs[reg], native_reg, SZ_D); } else { add_rdispr(&opts->gen.code, opts->gen.context_reg, areg_offset(reg), native_reg, SZ_D); } } void add_dreg_native(m68k_options *opts, uint8_t reg, uint8_t native_reg) { if (opts->dregs[reg] >= 0) { add_rr(&opts->gen.code, opts->dregs[reg], native_reg, SZ_D); } else { add_rdispr(&opts->gen.code, opts->gen.context_reg, dreg_offset(reg), native_reg, SZ_D); } } void calc_areg_displace(m68k_options *opts, m68k_op_info *op, uint8_t native_reg) { areg_to_native(opts, op->params.regs.pri, native_reg); add_ir(&opts->gen.code, op->params.regs.displacement, native_reg, SZ_D); } void calc_index_disp8(m68k_options *opts, m68k_op_info *op, uint8_t native_reg) { uint8_t sec_reg = (op->params.regs.sec >> 1) & 0x7; if (op->params.regs.sec & 1) { if (op->params.regs.sec & 0x10) { add_areg_native(opts, sec_reg, native_reg); } else { add_dreg_native(opts, sec_reg, native_reg); } } else { uint8_t other_reg = native_reg == opts->gen.scratch1 ? opts->gen.scratch2 : opts->gen.scratch1; if (op->params.regs.sec & 0x10) { areg_to_native_sx(opts, sec_reg, other_reg); } else { dreg_to_native_sx(opts, sec_reg, other_reg); } add_rr(&opts->gen.code, other_reg, native_reg, SZ_D); } if (op->params.regs.displacement) { add_ir(&opts->gen.code, op->params.regs.displacement, native_reg, SZ_D); } } void calc_areg_index_disp8(m68k_options *opts, m68k_op_info *op, uint8_t native_reg) { areg_to_native(opts, op->params.regs.pri, native_reg); calc_index_disp8(opts, op, native_reg); } void translate_m68k_op(m68kinst * inst, host_ea * ea, m68k_options * opts, uint8_t dst) { code_info *code = &opts->gen.code; m68k_op_info *op = dst ? &inst->dst : &inst->src; int8_t reg = native_reg(op, opts); uint8_t sec_reg; int32_t dec_amount,inc_amount; if (reg >= 0) { ea->mode = MODE_REG_DIRECT; if (!dst && inst->dst.addr_mode == MODE_AREG && inst->extra.size == OPSIZE_WORD) { movsx_rr(code, reg, opts->gen.scratch1, SZ_W, SZ_D); ea->base = opts->gen.scratch1; } else { ea->base = reg; } return; } switch (op->addr_mode) { case MODE_REG: case MODE_AREG: //We only get one memory parameter, so if the dst operand is a register in memory, //we need to copy this to a temp register first if we're translating the src operand if (dst || native_reg(&(inst->dst), opts) >= 0 || inst->dst.addr_mode == MODE_UNUSED || !(inst->dst.addr_mode == MODE_REG || inst->dst.addr_mode == MODE_AREG) || inst->op == M68K_EXG) { ea->mode = MODE_REG_DISPLACE8; ea->base = opts->gen.context_reg; ea->disp = reg_offset(op); } else { if (inst->dst.addr_mode == MODE_AREG && inst->extra.size == OPSIZE_WORD) { movsx_rdispr(code, opts->gen.context_reg, reg_offset(op), opts->gen.scratch1, SZ_W, SZ_D); } else { mov_rdispr(code, opts->gen.context_reg, reg_offset(op), opts->gen.scratch1, inst->extra.size); } ea->mode = MODE_REG_DIRECT; ea->base = opts->gen.scratch1; //we're explicitly handling the areg dest here, so we exit immediately return; } break; case MODE_AREG_PREDEC: if (dst && inst->src.addr_mode == MODE_AREG_PREDEC) { push_r(code, opts->gen.scratch1); } dec_amount = inst->extra.size == OPSIZE_WORD ? 2 : (inst->extra.size == OPSIZE_LONG ? 4 : (op->params.regs.pri == 7 ? 2 :1)); if (!dst) { cycles(&opts->gen, PREDEC_PENALTY); } subi_areg(opts, dec_amount, op->params.regs.pri); case MODE_AREG_INDIRECT: case MODE_AREG_POSTINC: areg_to_native(opts, op->params.regs.pri, opts->gen.scratch1); m68k_read_size(opts, inst->extra.size); if (dst) { if (inst->src.addr_mode == MODE_AREG_PREDEC) { //restore src operand to opts->gen.scratch2 pop_r(code, opts->gen.scratch2); } else { //save reg value in opts->gen.scratch2 so we can use it to save the result in memory later areg_to_native(opts, op->params.regs.pri, opts->gen.scratch2); } } if (op->addr_mode == MODE_AREG_POSTINC) { inc_amount = inst->extra.size == OPSIZE_WORD ? 2 : (inst->extra.size == OPSIZE_LONG ? 4 : (op->params.regs.pri == 7 ? 2 : 1)); addi_areg(opts, inc_amount, op->params.regs.pri); } ea->mode = MODE_REG_DIRECT; ea->base = (!dst && inst->dst.addr_mode == MODE_AREG_PREDEC && inst->op != M68K_MOVE) ? opts->gen.scratch2 : opts->gen.scratch1; break; case MODE_AREG_DISPLACE: cycles(&opts->gen, BUS); calc_areg_displace(opts, op, opts->gen.scratch1); if (dst) { push_r(code, opts->gen.scratch1); } m68k_read_size(opts, inst->extra.size); if (dst) { pop_r(code, opts->gen.scratch2); } ea->mode = MODE_REG_DIRECT; ea->base = opts->gen.scratch1; break; case MODE_AREG_INDEX_DISP8: cycles(&opts->gen, 6); calc_areg_index_disp8(opts, op, opts->gen.scratch1); if (dst) { push_r(code, opts->gen.scratch1); } m68k_read_size(opts, inst->extra.size); if (dst) { pop_r(code, opts->gen.scratch2); } ea->mode = MODE_REG_DIRECT; ea->base = opts->gen.scratch1; break; case MODE_PC_DISPLACE: cycles(&opts->gen, BUS); mov_ir(code, op->params.regs.displacement + inst->address+2, opts->gen.scratch1, SZ_D); if (dst) { push_r(code, opts->gen.scratch1); } m68k_read_size(opts, inst->extra.size); if (dst) { pop_r(code, opts->gen.scratch2); } ea->mode = MODE_REG_DIRECT; ea->base = opts->gen.scratch1; break; case MODE_PC_INDEX_DISP8: cycles(&opts->gen, 6); mov_ir(code, inst->address+2, opts->gen.scratch1, SZ_D); calc_index_disp8(opts, op, opts->gen.scratch1); if (dst) { push_r(code, opts->gen.scratch1); } m68k_read_size(opts, inst->extra.size); if (dst) { pop_r(code, opts->gen.scratch2); } ea->mode = MODE_REG_DIRECT; ea->base = opts->gen.scratch1; break; case MODE_ABSOLUTE: case MODE_ABSOLUTE_SHORT: cycles(&opts->gen, op->addr_mode == MODE_ABSOLUTE ? BUS*2 : BUS); mov_ir(code, op->params.immed, opts->gen.scratch1, SZ_D); if (dst) { push_r(code, opts->gen.scratch1); } m68k_read_size(opts, inst->extra.size); if (dst) { pop_r(code, opts->gen.scratch2); } ea->mode = MODE_REG_DIRECT; ea->base = opts->gen.scratch1; break; case MODE_IMMEDIATE: case MODE_IMMEDIATE_WORD: if (inst->variant != VAR_QUICK) { cycles(&opts->gen, (inst->extra.size == OPSIZE_LONG && op->addr_mode == MODE_IMMEDIATE) ? BUS*2 : BUS); } ea->mode = MODE_IMMED; ea->disp = op->params.immed; //sign extend value when the destination is an address register if (inst->dst.addr_mode == MODE_AREG && inst->extra.size == OPSIZE_WORD && ea->disp & 0x8000) { ea->disp |= 0xFFFF0000; } return; default: m68k_disasm(inst, disasm_buf); printf("%X: %s\naddress mode %d not implemented (%s)\n", inst->address, disasm_buf, op->addr_mode, dst ? "dst" : "src"); exit(1); } if (!dst && inst->dst.addr_mode == MODE_AREG && inst->extra.size == OPSIZE_WORD) { if (ea->mode == MODE_REG_DIRECT) { movsx_rr(code, ea->base, opts->gen.scratch1, SZ_W, SZ_D); } else { movsx_rdispr(code, ea->base, ea->disp, opts->gen.scratch1, SZ_W, SZ_D); ea->mode = MODE_REG_DIRECT; } ea->base = opts->gen.scratch1; } } void m68k_save_result(m68kinst * inst, m68k_options * opts) { code_info *code = &opts->gen.code; if (inst->dst.addr_mode != MODE_REG && inst->dst.addr_mode != MODE_AREG && inst->dst.addr_mode != MODE_UNUSED) { if (inst->dst.addr_mode == MODE_AREG_PREDEC && inst->src.addr_mode == MODE_AREG_PREDEC && inst->op != M68K_MOVE) { areg_to_native(opts, inst->dst.params.regs.pri, opts->gen.scratch2); } switch (inst->extra.size) { case OPSIZE_BYTE: call(code, opts->write_8); break; case OPSIZE_WORD: call(code, opts->write_16); break; case OPSIZE_LONG: call(code, opts->write_32_lowfirst); break; } } } void translate_m68k_move(m68k_options * opts, m68kinst * inst) { code_info *code = &opts->gen.code; int8_t reg, flags_reg, sec_reg; uint8_t dir = 0; int32_t offset; int32_t inc_amount, dec_amount; host_ea src; translate_m68k_op(inst, &src, opts, 0); reg = native_reg(&(inst->dst), opts); if (inst->dst.addr_mode != MODE_AREG) { if (src.mode == MODE_REG_DIRECT) { flags_reg = src.base; } else { if (reg >= 0) { flags_reg = reg; } else { if(src.mode == MODE_REG_DISPLACE8) { mov_rdispr(code, src.base, src.disp, opts->gen.scratch1, inst->extra.size); } else { mov_ir(code, src.disp, opts->gen.scratch1, inst->extra.size); } src.mode = MODE_REG_DIRECT; flags_reg = src.base = opts->gen.scratch1; } } } uint8_t size = inst->extra.size; switch(inst->dst.addr_mode) { case MODE_AREG: size = OPSIZE_LONG; case MODE_REG: if (reg >= 0) { if (src.mode == MODE_REG_DIRECT) { mov_rr(code, src.base, reg, size); } else if (src.mode == MODE_REG_DISPLACE8) { mov_rdispr(code, src.base, src.disp, reg, size); } else { mov_ir(code, src.disp, reg, size); } } else if(src.mode == MODE_REG_DIRECT) { mov_rrdisp(code, src.base, opts->gen.context_reg, reg_offset(&(inst->dst)), size); } else { mov_irdisp(code, src.disp, opts->gen.context_reg, reg_offset(&(inst->dst)), size); } break; case MODE_AREG_PREDEC: dec_amount = inst->extra.size == OPSIZE_WORD ? 2 : (inst->extra.size == OPSIZE_LONG ? 4 : (inst->dst.params.regs.pri == 7 ? 2 : 1)); subi_areg(opts, dec_amount, inst->dst.params.regs.pri); case MODE_AREG_INDIRECT: case MODE_AREG_POSTINC: areg_to_native(opts, inst->dst.params.regs.pri, opts->gen.scratch2); if (src.mode == MODE_REG_DIRECT) { if (src.base != opts->gen.scratch1) { mov_rr(code, src.base, opts->gen.scratch1, inst->extra.size); } } else if (src.mode == MODE_REG_DISPLACE8) { mov_rdispr(code, src.base, src.disp, opts->gen.scratch1, inst->extra.size); } else { mov_ir(code, src.disp, opts->gen.scratch1, inst->extra.size); } break; case MODE_AREG_DISPLACE: cycles(&opts->gen, BUS); calc_areg_displace(opts, &inst->dst, opts->gen.scratch2); if (src.mode == MODE_REG_DIRECT) { if (src.base != opts->gen.scratch1) { mov_rr(code, src.base, opts->gen.scratch1, inst->extra.size); } } else if (src.mode == MODE_REG_DISPLACE8) { mov_rdispr(code, src.base, src.disp, opts->gen.scratch1, inst->extra.size); } else { mov_ir(code, src.disp, opts->gen.scratch1, inst->extra.size); } break; case MODE_AREG_INDEX_DISP8: cycles(&opts->gen, 6);//TODO: Check to make sure this is correct //calc_areg_index_disp8 will clober scratch1 when a 16-bit index is used if (src.base == opts->gen.scratch1 && !(inst->dst.params.regs.sec & 1)) { push_r(code, opts->gen.scratch1); } calc_areg_index_disp8(opts, &inst->dst, opts->gen.scratch2); if (src.base == opts->gen.scratch1 && !(inst->dst.params.regs.sec & 1)) { pop_r(code, opts->gen.scratch1); } if (src.mode == MODE_REG_DIRECT) { if (src.base != opts->gen.scratch1) { mov_rr(code, src.base, opts->gen.scratch1, inst->extra.size); } } else if (src.mode == MODE_REG_DISPLACE8) { mov_rdispr(code, src.base, src.disp, opts->gen.scratch1, inst->extra.size); } else { mov_ir(code, src.disp, opts->gen.scratch1, inst->extra.size); } break; case MODE_PC_DISPLACE: cycles(&opts->gen, BUS); mov_ir(code, inst->dst.params.regs.displacement + inst->address+2, opts->gen.scratch2, SZ_D); if (src.mode == MODE_REG_DIRECT) { if (src.base != opts->gen.scratch1) { mov_rr(code, src.base, opts->gen.scratch1, inst->extra.size); } } else if (src.mode == MODE_REG_DISPLACE8) { mov_rdispr(code, src.base, src.disp, opts->gen.scratch1, inst->extra.size); } else { mov_ir(code, src.disp, opts->gen.scratch1, inst->extra.size); } break; case MODE_PC_INDEX_DISP8: cycles(&opts->gen, 6);//TODO: Check to make sure this is correct mov_ir(code, inst->address, opts->gen.scratch2, SZ_D); if (src.base == opts->gen.scratch1 && !(inst->dst.params.regs.sec & 1)) { push_r(code, opts->gen.scratch1); } calc_index_disp8(opts, &inst->dst, opts->gen.scratch2); if (src.base == opts->gen.scratch1 && !(inst->dst.params.regs.sec & 1)) { pop_r(code, opts->gen.scratch1); } if (src.mode == MODE_REG_DIRECT) { if (src.base != opts->gen.scratch1) { mov_rr(code, src.base, opts->gen.scratch1, inst->extra.size); } } else if (src.mode == MODE_REG_DISPLACE8) { mov_rdispr(code, src.base, src.disp, opts->gen.scratch1, inst->extra.size); } else { mov_ir(code, src.disp, opts->gen.scratch1, inst->extra.size); } break; case MODE_ABSOLUTE: case MODE_ABSOLUTE_SHORT: if (src.mode == MODE_REG_DIRECT) { if (src.base != opts->gen.scratch1) { mov_rr(code, src.base, opts->gen.scratch1, inst->extra.size); } } else if (src.mode == MODE_REG_DISPLACE8) { mov_rdispr(code, src.base, src.disp, opts->gen.scratch1, inst->extra.size); } else { mov_ir(code, src.disp, opts->gen.scratch1, inst->extra.size); } if (inst->dst.addr_mode == MODE_ABSOLUTE) { cycles(&opts->gen, BUS*2); } else { cycles(&opts->gen, BUS); } mov_ir(code, inst->dst.params.immed, opts->gen.scratch2, SZ_D); break; default: m68k_disasm(inst, disasm_buf); printf("%X: %s\naddress mode %d not implemented (move dst)\n", inst->address, disasm_buf, inst->dst.addr_mode); exit(1); } if (inst->dst.addr_mode != MODE_AREG) { cmp_ir(code, 0, flags_reg, inst->extra.size); update_flags(opts, N|Z|V0|C0); } if (inst->dst.addr_mode != MODE_REG && inst->dst.addr_mode != MODE_AREG) { m68k_write_size(opts, inst->extra.size); if (inst->dst.addr_mode == MODE_AREG_POSTINC) { inc_amount = inst->extra.size == OPSIZE_WORD ? 2 : (inst->extra.size == OPSIZE_LONG ? 4 : (inst->dst.params.regs.pri == 7 ? 2 : 1)); addi_areg(opts, inc_amount, inst->dst.params.regs.pri); } } //add cycles for prefetch cycles(&opts->gen, BUS); } void translate_m68k_clr(m68k_options * opts, m68kinst * inst) { code_info *code = &opts->gen.code; update_flags(opts, N0|V0|C0|Z1); int8_t reg = native_reg(&(inst->dst), opts); if (reg >= 0) { cycles(&opts->gen, (inst->extra.size == OPSIZE_LONG ? 6 : 4)); xor_rr(code, reg, reg, inst->extra.size); return; } host_ea dst_op; //TODO: fix timing translate_m68k_op(inst, &dst_op, opts, 1); if (dst_op.mode == MODE_REG_DIRECT) { xor_rr(code, dst_op.base, dst_op.base, inst->extra.size); } else { mov_irdisp(code, 0, dst_op.base, dst_op.disp, inst->extra.size); } m68k_save_result(inst, opts); } void translate_m68k_ext(m68k_options * opts, m68kinst * inst) { code_info *code = &opts->gen.code; host_ea dst_op; uint8_t dst_size = inst->extra.size; inst->extra.size--; translate_m68k_op(inst, &dst_op, opts, 1); if (dst_op.mode == MODE_REG_DIRECT) { movsx_rr(code, dst_op.base, dst_op.base, inst->extra.size, dst_size); cmp_ir(code, 0, dst_op.base, dst_size); } else { movsx_rdispr(code, dst_op.base, dst_op.disp, opts->gen.scratch1, inst->extra.size, dst_size); cmp_ir(code, 0, opts->gen.scratch1, dst_size); mov_rrdisp(code, opts->gen.scratch1, dst_op.base, dst_op.disp, dst_size); } inst->extra.size = dst_size; update_flags(opts, N|V0|C0|Z); //M68K EXT only operates on registers so no need for a call to save result here } uint8_t m68k_eval_cond(m68k_options * opts, uint8_t cc) { uint8_t cond = CC_NZ; switch (cc) { case COND_HIGH: cond = CC_Z; case COND_LOW_SAME: flag_to_reg(opts, FLAG_Z, opts->gen.scratch1); or_flag_to_reg(opts, FLAG_C, opts->gen.scratch1); break; case COND_CARRY_CLR: cond = CC_Z; case COND_CARRY_SET: check_flag(opts, FLAG_C); break; case COND_NOT_EQ: cond = CC_Z; case COND_EQ: check_flag(opts, FLAG_Z); break; case COND_OVERF_CLR: cond = CC_Z; case COND_OVERF_SET: check_flag(opts, FLAG_V); break; case COND_PLUS: cond = CC_Z; case COND_MINUS: check_flag(opts, FLAG_N); break; case COND_GREATER_EQ: cond = CC_Z; case COND_LESS: cmp_flags(opts, FLAG_N, FLAG_V); break; case COND_GREATER: cond = CC_Z; case COND_LESS_EQ: flag_to_reg(opts, FLAG_V, opts->gen.scratch1); xor_flag_to_reg(opts, FLAG_N, opts->gen.scratch1); or_flag_to_reg(opts, FLAG_Z, opts->gen.scratch1); break; } return cond; } void translate_m68k_bcc(m68k_options * opts, m68kinst * inst) { code_info *code = &opts->gen.code; cycles(&opts->gen, 10);//TODO: Adjust this for branch not taken case int32_t disp = inst->src.params.immed; uint32_t after = inst->address + 2; if (inst->extra.cond == COND_TRUE) { jump_m68k_abs(opts, after + disp); } else { code_ptr dest_addr = get_native_address(opts->gen.native_code_map, after + disp); uint8_t cond = m68k_eval_cond(opts, inst->extra.cond); if (!dest_addr) { opts->gen.deferred = defer_address(opts->gen.deferred, after + disp, code->cur + 2); //dummy address to be replaced later, make sure it generates a 4-byte displacement dest_addr = code->cur + 256; } jcc(code, cond, dest_addr); } } void translate_m68k_scc(m68k_options * opts, m68kinst * inst) { code_info *code = &opts->gen.code; uint8_t cond = inst->extra.cond; host_ea dst_op; inst->extra.size = OPSIZE_BYTE; translate_m68k_op(inst, &dst_op, opts, 1); if (cond == COND_TRUE || cond == COND_FALSE) { if ((inst->dst.addr_mode == MODE_REG || inst->dst.addr_mode == MODE_AREG) && inst->extra.cond == COND_TRUE) { cycles(&opts->gen, 6); } else { cycles(&opts->gen, BUS); } if (dst_op.mode == MODE_REG_DIRECT) { mov_ir(code, cond == COND_TRUE ? 0xFF : 0, dst_op.base, SZ_B); } else { mov_irdisp(code, cond == COND_TRUE ? 0xFF : 0, dst_op.base, dst_op.disp, SZ_B); } } else { uint8_t cc = m68k_eval_cond(opts, cond); check_alloc_code(code, 6*MAX_INST_LEN); code_ptr true_off = code->cur + 1; jcc(code, cc, code->cur+2); cycles(&opts->gen, BUS); if (dst_op.mode == MODE_REG_DIRECT) { mov_ir(code, 0, dst_op.base, SZ_B); } else { mov_irdisp(code, 0, dst_op.base, dst_op.disp, SZ_B); } code_ptr end_off = code->cur+1; jmp(code, code->cur+2); *true_off = code->cur - (true_off+1); cycles(&opts->gen, 6); if (dst_op.mode == MODE_REG_DIRECT) { mov_ir(code, 0xFF, dst_op.base, SZ_B); } else { mov_irdisp(code, 0xFF, dst_op.base, dst_op.disp, SZ_B); } *end_off = code->cur - (end_off+1); } m68k_save_result(inst, opts); } void translate_m68k_dbcc(m68k_options * opts, m68kinst * inst) { code_info *code = &opts->gen.code; //best case duration cycles(&opts->gen, 10); code_ptr skip_loc = NULL; //TODO: Check if COND_TRUE technically valid here even though //it's basically a slow NOP if (inst->extra.cond != COND_FALSE) { uint8_t cond = m68k_eval_cond(opts, inst->extra.cond); check_alloc_code(code, 6*MAX_INST_LEN); skip_loc = code->cur + 1; jcc(code, cond, code->cur + 2); } if (opts->dregs[inst->dst.params.regs.pri] >= 0) { sub_ir(code, 1, opts->dregs[inst->dst.params.regs.pri], SZ_W); cmp_ir(code, -1, opts->dregs[inst->dst.params.regs.pri], SZ_W); } else { sub_irdisp(code, 1, opts->gen.context_reg, offsetof(m68k_context, dregs) + 4 * inst->dst.params.regs.pri, SZ_W); cmp_irdisp(code, -1, opts->gen.context_reg, offsetof(m68k_context, dregs) + 4 * inst->dst.params.regs.pri, SZ_W); } code_ptr loop_end_loc = code->cur + 1; jcc(code, CC_Z, code->cur + 2); uint32_t after = inst->address + 2; jump_m68k_abs(opts, after + inst->src.params.immed); *loop_end_loc = code->cur - (loop_end_loc+1); if (skip_loc) { cycles(&opts->gen, 2); *skip_loc = code->cur - (skip_loc+1); cycles(&opts->gen, 2); } else { cycles(&opts->gen, 4); } } void translate_m68k_movep(m68k_options * opts, m68kinst * inst) { code_info *code = &opts->gen.code; int8_t reg; cycles(&opts->gen, BUS*2); if (inst->src.addr_mode == MODE_REG) { calc_areg_displace(opts, &inst->dst, opts->gen.scratch2); reg = native_reg(&(inst->src), opts); if (inst->extra.size == OPSIZE_LONG) { if (reg >= 0) { mov_rr(code, reg, opts->gen.scratch1, SZ_D); shr_ir(code, 24, opts->gen.scratch1, SZ_D); push_r(code, opts->gen.scratch2); call(code, opts->write_8); pop_r(code, opts->gen.scratch2); mov_rr(code, reg, opts->gen.scratch1, SZ_D); shr_ir(code, 16, opts->gen.scratch1, SZ_D); } else { mov_rdispr(code, opts->gen.context_reg, reg_offset(&(inst->src))+3, opts->gen.scratch1, SZ_B); push_r(code, opts->gen.scratch2); call(code, opts->write_8); pop_r(code, opts->gen.scratch2); mov_rdispr(code, opts->gen.context_reg, reg_offset(&(inst->src))+2, opts->gen.scratch1, SZ_B); } add_ir(code, 2, opts->gen.scratch2, SZ_D); push_r(code, opts->gen.scratch2); call(code, opts->write_8); pop_r(code, opts->gen.scratch2); add_ir(code, 2, opts->gen.scratch2, SZ_D); } if (reg >= 0) { mov_rr(code, reg, opts->gen.scratch1, SZ_W); shr_ir(code, 8, opts->gen.scratch1, SZ_W); push_r(code, opts->gen.scratch2); call(code, opts->write_8); pop_r(code, opts->gen.scratch2); mov_rr(code, reg, opts->gen.scratch1, SZ_W); } else { mov_rdispr(code, opts->gen.context_reg, reg_offset(&(inst->src))+1, opts->gen.scratch1, SZ_B); push_r(code, opts->gen.scratch2); call(code, opts->write_8); pop_r(code, opts->gen.scratch2); mov_rdispr(code, opts->gen.context_reg, reg_offset(&(inst->src)), opts->gen.scratch1, SZ_B); } add_ir(code, 2, opts->gen.scratch2, SZ_D); call(code, opts->write_8); } else { calc_areg_displace(opts, &inst->src, opts->gen.scratch1); reg = native_reg(&(inst->dst), opts); if (inst->extra.size == OPSIZE_LONG) { if (reg >= 0) { push_r(code, opts->gen.scratch1); call(code, opts->read_8); shl_ir(code, 24, opts->gen.scratch1, SZ_D); mov_rr(code, opts->gen.scratch1, reg, SZ_D); pop_r(code, opts->gen.scratch1); add_ir(code, 2, opts->gen.scratch1, SZ_D); push_r(code, opts->gen.scratch1); call(code, opts->read_8); shl_ir(code, 16, opts->gen.scratch1, SZ_D); or_rr(code, opts->gen.scratch1, reg, SZ_D); } else { push_r(code, opts->gen.scratch1); call(code, opts->read_8); mov_rrdisp(code, opts->gen.scratch1, opts->gen.context_reg, reg_offset(&(inst->dst))+3, SZ_B); pop_r(code, opts->gen.scratch1); add_ir(code, 2, opts->gen.scratch1, SZ_D); push_r(code, opts->gen.scratch1); call(code, opts->read_8); mov_rrdisp(code, opts->gen.scratch1, opts->gen.context_reg, reg_offset(&(inst->dst))+2, SZ_B); } pop_r(code, opts->gen.scratch1); add_ir(code, 2, opts->gen.scratch1, SZ_D); } push_r(code, opts->gen.scratch1); call(code, opts->read_8); if (reg >= 0) { shl_ir(code, 8, opts->gen.scratch1, SZ_W); mov_rr(code, opts->gen.scratch1, reg, SZ_W); pop_r(code, opts->gen.scratch1); add_ir(code, 2, opts->gen.scratch1, SZ_D); call(code, opts->read_8); mov_rr(code, opts->gen.scratch1, reg, SZ_B); } else { mov_rrdisp(code, opts->gen.scratch1, opts->gen.context_reg, reg_offset(&(inst->dst))+1, SZ_B); pop_r(code, opts->gen.scratch1); add_ir(code, 2, opts->gen.scratch1, SZ_D); call(code, opts->read_8); mov_rrdisp(code, opts->gen.scratch1, opts->gen.context_reg, reg_offset(&(inst->dst)), SZ_B); } } } typedef void (*shift_ir_t)(code_info *code, uint8_t val, uint8_t dst, uint8_t size); typedef void (*shift_irdisp_t)(code_info *code, uint8_t val, uint8_t dst_base, int32_t disp, uint8_t size); typedef void (*shift_clr_t)(code_info *code, uint8_t dst, uint8_t size); typedef void (*shift_clrdisp_t)(code_info *code, uint8_t dst_base, int32_t disp, uint8_t size); void translate_shift(m68k_options * opts, m68kinst * inst, host_ea *src_op, host_ea * dst_op, shift_ir_t shift_ir, shift_irdisp_t shift_irdisp, shift_clr_t shift_clr, shift_clrdisp_t shift_clrdisp, shift_ir_t special, shift_irdisp_t special_disp) { code_info *code = &opts->gen.code; code_ptr end_off = NULL; code_ptr nz_off = NULL; code_ptr z_off = NULL; if (inst->src.addr_mode == MODE_UNUSED) { cycles(&opts->gen, BUS); //Memory shift shift_ir(code, 1, dst_op->base, SZ_W); } else { cycles(&opts->gen, inst->extra.size == OPSIZE_LONG ? 8 : 6); if (src_op->mode == MODE_IMMED) { if (src_op->disp != 1 && inst->op == M68K_ASL) { set_flag(opts, 0, FLAG_V); for (int i = 0; i < src_op->disp; i++) { if (dst_op->mode == MODE_REG_DIRECT) { shift_ir(code, 1, dst_op->base, inst->extra.size); } else { shift_irdisp(code, 1, dst_op->base, dst_op->disp, inst->extra.size); } check_alloc_code(code, 2*MAX_INST_LEN); code_ptr after_flag_set = code->cur + 1; jcc(code, CC_NO, code->cur + 2); set_flag(opts, 1, FLAG_V); *after_flag_set = code->cur - (after_flag_set+1); } } else { if (dst_op->mode == MODE_REG_DIRECT) { shift_ir(code, src_op->disp, dst_op->base, inst->extra.size); } else { shift_irdisp(code, src_op->disp, dst_op->base, dst_op->disp, inst->extra.size); } set_flag_cond(opts, CC_O, FLAG_V); } } else { if (src_op->base != RCX) { if (src_op->mode == MODE_REG_DIRECT) { mov_rr(code, src_op->base, RCX, SZ_B); } else { mov_rdispr(code, src_op->base, src_op->disp, RCX, SZ_B); } } and_ir(code, 63, RCX, SZ_D); check_alloc_code(code, 7*MAX_INST_LEN); nz_off = code->cur + 1; jcc(code, CC_NZ, code->cur + 2); //Flag behavior for shift count of 0 is different for x86 than 68K if (dst_op->mode == MODE_REG_DIRECT) { cmp_ir(code, 0, dst_op->base, inst->extra.size); } else { cmp_irdisp(code, 0, dst_op->base, dst_op->disp, inst->extra.size); } set_flag_cond(opts, CC_Z, FLAG_Z); set_flag_cond(opts, CC_S, FLAG_N); set_flag(opts, 0, FLAG_C); //For other instructions, this flag will be set below if (inst->op == M68K_ASL) { set_flag(opts, 0, FLAG_V); } z_off = code->cur + 1; jmp(code, code->cur + 2); *nz_off = code->cur - (nz_off + 1); //add 2 cycles for every bit shifted add_rr(code, RCX, CYCLES, SZ_D); add_rr(code, RCX, CYCLES, SZ_D); if (inst->op == M68K_ASL) { //ASL has Overflow flag behavior that depends on all of the bits shifted through the MSB //Easiest way to deal with this is to shift one bit at a time set_flag(opts, 0, FLAG_V); check_alloc_code(code, 5*MAX_INST_LEN); code_ptr loop_start = code->cur; if (dst_op->mode == MODE_REG_DIRECT) { shift_ir(code, 1, dst_op->base, inst->extra.size); } else { shift_irdisp(code, 1, dst_op->base, dst_op->disp, inst->extra.size); } code_ptr after_flag_set = code->cur + 1; jcc(code, CC_NO, code->cur + 2); set_flag(opts, 1, FLAG_V); *after_flag_set = code->cur - (after_flag_set+1); loop(code, loop_start); } else { //x86 shifts modulo 32 for operand sizes less than 64-bits //but M68K shifts modulo 64, so we need to check for large shifts here cmp_ir(code, 32, RCX, SZ_B); check_alloc_code(code, 14*MAX_INST_LEN); code_ptr norm_shift_off = code->cur + 1; jcc(code, CC_L, code->cur + 2); if (special) { code_ptr after_flag_set = NULL; if (inst->extra.size == OPSIZE_LONG) { code_ptr neq_32_off = code->cur + 1; jcc(code, CC_NZ, code->cur + 2); //set the carry bit to the lsb if (dst_op->mode == MODE_REG_DIRECT) { special(code, 1, dst_op->base, SZ_D); } else { special_disp(code, 1, dst_op->base, dst_op->disp, SZ_D); } set_flag_cond(opts, CC_C, FLAG_C); after_flag_set = code->cur + 1; jmp(code, code->cur + 2); *neq_32_off = code->cur - (neq_32_off+1); } set_flag(opts, 0, FLAG_C); if (after_flag_set) { *after_flag_set = code->cur - (after_flag_set+1); } set_flag(opts, 1, FLAG_Z); set_flag(opts, 0, FLAG_N); if (dst_op->mode == MODE_REG_DIRECT) { xor_rr(code, dst_op->base, dst_op->base, inst->extra.size); } else { mov_irdisp(code, 0, dst_op->base, dst_op->disp, inst->extra.size); } } else { if (dst_op->mode == MODE_REG_DIRECT) { shift_ir(code, 31, dst_op->base, inst->extra.size); shift_ir(code, 1, dst_op->base, inst->extra.size); } else { shift_irdisp(code, 31, dst_op->base, dst_op->disp, inst->extra.size); shift_irdisp(code, 1, dst_op->base, dst_op->disp, inst->extra.size); } } end_off = code->cur + 1; jmp(code, code->cur + 2); *norm_shift_off = code->cur - (norm_shift_off+1); if (dst_op->mode == MODE_REG_DIRECT) { shift_clr(code, dst_op->base, inst->extra.size); } else { shift_clrdisp(code, dst_op->base, dst_op->disp, inst->extra.size); } } } } if (!special && end_off) { *end_off = code->cur - (end_off + 1); } update_flags(opts, C|Z|N); if (special && end_off) { *end_off = code->cur - (end_off + 1); } //set X flag to same as C flag if (opts->flag_regs[FLAG_C] >= 0) { flag_to_flag(opts, FLAG_C, FLAG_X); } else { set_flag_cond(opts, CC_C, FLAG_X); } if (z_off) { *z_off = code->cur - (z_off + 1); } if (inst->op != M68K_ASL) { set_flag(opts, 0, FLAG_V); } if (inst->src.addr_mode == MODE_UNUSED) { m68k_save_result(inst, opts); } } void op_ir(code_info *code, m68kinst *inst, int32_t val, uint8_t dst, uint8_t size) { switch (inst->op) { case M68K_ADD: add_ir(code, val, dst, size); break; case M68K_ADDX: adc_ir(code, val, dst, size); break; case M68K_AND: and_ir(code, val, dst, size); break; case M68K_BTST: bt_ir(code, val, dst, size); break; case M68K_BSET: bts_ir(code, val, dst, size); break; case M68K_BCLR: btr_ir(code, val, dst, size); break; case M68K_BCHG: btc_ir(code, val, dst, size); break; case M68K_CMP: cmp_ir(code, val, dst, size); break; case M68K_EOR: xor_ir(code, val, dst, size); break; case M68K_OR: or_ir(code, val, dst, size); break; case M68K_ROL: rol_ir(code, val, dst, size); break; case M68K_ROR: ror_ir(code, val, dst, size); break; case M68K_ROXL: rcl_ir(code, val, dst, size); break; case M68K_ROXR: rcr_ir(code, val, dst, size); break; case M68K_SUB: sub_ir(code, val, dst, size); break; case M68K_SUBX: sbb_ir(code, val, dst, size); break; } } void op_irdisp(code_info *code, m68kinst *inst, int32_t val, uint8_t dst, int32_t disp, uint8_t size) { switch (inst->op) { case M68K_ADD: add_irdisp(code, val, dst, disp, size); break; case M68K_ADDX: adc_irdisp(code, val, dst, disp, size); break; case M68K_AND: and_irdisp(code, val, dst, disp, size); break; case M68K_BTST: bt_irdisp(code, val, dst, disp, size); break; case M68K_BSET: bts_irdisp(code, val, dst, disp, size); break; case M68K_BCLR: btr_irdisp(code, val, dst, disp, size); break; case M68K_BCHG: btc_irdisp(code, val, dst, disp, size); break; case M68K_CMP: cmp_irdisp(code, val, dst, disp, size); break; case M68K_EOR: xor_irdisp(code, val, dst, disp, size); break; case M68K_OR: or_irdisp(code, val, dst, disp, size); break; case M68K_ROL: rol_irdisp(code, val, dst, disp, size); break; case M68K_ROR: ror_irdisp(code, val, dst, disp, size); break; case M68K_ROXL: rcl_irdisp(code, val, dst, disp, size); break; case M68K_ROXR: rcr_irdisp(code, val, dst, disp, size); break; case M68K_SUB: sub_irdisp(code, val, dst, disp, size); break; case M68K_SUBX: sbb_irdisp(code, val, dst, disp, size); break; } } void op_rr(code_info *code, m68kinst *inst, uint8_t src, uint8_t dst, uint8_t size) { switch (inst->op) { case M68K_ADD: add_rr(code, src, dst, size); break; case M68K_ADDX: adc_rr(code, src, dst, size); break; case M68K_AND: and_rr(code, src, dst, size); break; case M68K_BTST: bt_rr(code, src, dst, size); break; case M68K_BSET: bts_rr(code, src, dst, size); break; case M68K_BCLR: btr_rr(code, src, dst, size); break; case M68K_BCHG: btc_rr(code, src, dst, size); break; case M68K_CMP: cmp_rr(code, src, dst, size); break; case M68K_EOR: xor_rr(code, src, dst, size); break; case M68K_OR: or_rr(code, src, dst, size); break; case M68K_SUB: sub_rr(code, src, dst, size); break; case M68K_SUBX: sbb_rr(code, src, dst, size); break; } } void op_rrdisp(code_info *code, m68kinst *inst, uint8_t src, uint8_t dst, int32_t disp, uint8_t size) { switch (inst->op) { case M68K_ADD: add_rrdisp(code, src, dst, disp, size); break; case M68K_ADDX: adc_rrdisp(code, src, dst, disp, size); break; case M68K_AND: and_rrdisp(code, src, dst, disp, size); break; case M68K_BTST: bt_rrdisp(code, src, dst, disp, size); break; case M68K_BSET: bts_rrdisp(code, src, dst, disp, size); break; case M68K_BCLR: btr_rrdisp(code, src, dst, disp, size); break; case M68K_BCHG: btc_rrdisp(code, src, dst, disp, size); break; case M68K_CMP: cmp_rrdisp(code, src, dst, disp, size); break; case M68K_EOR: xor_rrdisp(code, src, dst, disp, size); break; case M68K_OR: or_rrdisp(code, src, dst, disp, size); break; case M68K_SUB: sub_rrdisp(code, src, dst, disp, size); break; case M68K_SUBX: sbb_rrdisp(code, src, dst, disp, size); break; } } void op_rdispr(code_info *code, m68kinst *inst, uint8_t src, int32_t disp, uint8_t dst, uint8_t size) { switch (inst->op) { case M68K_ADD: add_rdispr(code, src, disp, dst, size); break; case M68K_ADDX: adc_rdispr(code, src, disp, dst, size); break; case M68K_AND: and_rdispr(code, src, disp, dst, size); break; case M68K_CMP: cmp_rdispr(code, src, disp, dst, size); break; case M68K_EOR: xor_rdispr(code, src, disp, dst, size); break; case M68K_OR: or_rdispr(code, src, disp, dst, size); break; case M68K_SUB: sub_rdispr(code, src, disp, dst, size); break; case M68K_SUBX: sbb_rdispr(code, src, disp, dst, size); break; } } void translate_m68k_arith(m68k_options *opts, m68kinst * inst, uint32_t flag_mask, host_ea *src_op, host_ea *dst_op) { code_info *code = &opts->gen.code; cycles(&opts->gen, BUS); if (inst->op == M68K_ADDX || inst->op == M68K_SUBX) { flag_to_carry(opts, FLAG_X); } uint8_t size = inst->dst.addr_mode == MODE_AREG ? OPSIZE_LONG : inst->extra.size; if (src_op->mode == MODE_REG_DIRECT) { if (dst_op->mode == MODE_REG_DIRECT) { op_rr(code, inst, src_op->base, dst_op->base, size); } else { op_rrdisp(code, inst, src_op->base, dst_op->base, dst_op->disp, size); } } else if (src_op->mode == MODE_REG_DISPLACE8) { op_rdispr(code, inst, src_op->base, src_op->disp, dst_op->base, size); } else { if (dst_op->mode == MODE_REG_DIRECT) { op_ir(code, inst, src_op->disp, dst_op->base, size); } else { op_irdisp(code, inst, src_op->disp, dst_op->base, dst_op->disp, size); } } if (inst->dst.addr_mode != MODE_AREG || inst->op == M68K_CMP) { update_flags(opts, flag_mask); if (inst->op == M68K_ADDX || inst->op == M68K_SUBX) { check_alloc_code(code, 2*MAX_INST_LEN); code_ptr after_flag_set = code->cur + 1; jcc(code, CC_Z, code->cur + 2); set_flag(opts, 0, FLAG_Z); *after_flag_set = code->cur - (after_flag_set+1); } } if (inst->op != M68K_CMP) { m68k_save_result(inst, opts); } } void translate_m68k_cmp(m68k_options * opts, m68kinst * inst) { code_info *code = &opts->gen.code; uint8_t size = inst->extra.size; host_ea src_op, dst_op; translate_m68k_op(inst, &src_op, opts, 0); if (inst->dst.addr_mode == MODE_AREG_POSTINC) { push_r(code, opts->gen.scratch1); translate_m68k_op(inst, &dst_op, opts, 1); pop_r(code, opts->gen.scratch2); src_op.base = opts->gen.scratch2; } else { translate_m68k_op(inst, &dst_op, opts, 1); if (inst->dst.addr_mode == MODE_AREG && size == OPSIZE_WORD) { size = OPSIZE_LONG; } } translate_m68k_arith(opts, inst, N|Z|V|C, &src_op, &dst_op); } void op_r(code_info *code, m68kinst *inst, uint8_t dst, uint8_t size) { switch(inst->op) { case M68K_NEG: neg_r(code, dst, size); break; case M68K_NOT: not_r(code, dst, size); cmp_ir(code, 0, dst, size); break; case M68K_ROL: rol_clr(code, dst, size); break; case M68K_ROR: ror_clr(code, dst, size); break; case M68K_ROXL: rcl_clr(code, dst, size); break; case M68K_ROXR: rcr_clr(code, dst, size); break; case M68K_SWAP: rol_ir(code, 16, dst, SZ_D); cmp_ir(code, 0, dst, SZ_D); break; case M68K_TST: cmp_ir(code, 0, dst, size); break; } } void op_rdisp(code_info *code, m68kinst *inst, uint8_t dst, int32_t disp, uint8_t size) { switch(inst->op) { case M68K_NEG: neg_rdisp(code, dst, disp, size); break; case M68K_NOT: not_rdisp(code, dst, disp, size); cmp_irdisp(code, 0, dst, disp, size); break; case M68K_ROL: rol_clrdisp(code, dst, disp, size); break; case M68K_ROR: ror_clrdisp(code, dst, disp, size); break; case M68K_ROXL: rcl_clrdisp(code, dst, disp, size); break; case M68K_ROXR: rcr_clrdisp(code, dst, disp, size); break; case M68K_SWAP: rol_irdisp(code, 16, dst, disp, SZ_D); cmp_irdisp(code, 0, dst, disp, SZ_D); break; case M68K_TST: cmp_irdisp(code, 0, dst, disp, size); break; } } void translate_m68k_unary(m68k_options *opts, m68kinst *inst, uint32_t flag_mask, host_ea *dst_op) { code_info *code = &opts->gen.code; cycles(&opts->gen, BUS); if (dst_op->mode == MODE_REG_DIRECT) { op_r(code, inst, dst_op->base, inst->extra.size); } else { op_rdisp(code, inst, dst_op->base, dst_op->disp, inst->extra.size); } update_flags(opts, flag_mask); m68k_save_result(inst, opts); } void translate_m68k_invalid(m68k_options *opts, m68kinst *inst) { code_info *code = &opts->gen.code; if (inst->src.params.immed == 0x7100) { retn(code); return; } mov_ir(code, inst->address, opts->gen.scratch1, SZ_D); call(code, (code_ptr)m68k_invalid); } void translate_m68k_abcd_sbcd(m68k_options *opts, m68kinst *inst, host_ea *src_op, host_ea *dst_op) { code_info *code = &opts->gen.code; if (src_op->base != opts->gen.scratch2) { if (src_op->mode == MODE_REG_DIRECT) { mov_rr(code, src_op->base, opts->gen.scratch2, SZ_B); } else { mov_rdispr(code, src_op->base, src_op->disp, opts->gen.scratch2, SZ_B); } } if (dst_op->base != opts->gen.scratch1) { if (dst_op->mode == MODE_REG_DIRECT) { mov_rr(code, dst_op->base, opts->gen.scratch1, SZ_B); } else { mov_rdispr(code, dst_op->base, dst_op->disp, opts->gen.scratch1, SZ_B); } } flag_to_carry(opts, FLAG_X); jcc(code, CC_NC, code->cur + 5); if (inst->op == M68K_ABCD) { add_ir(code, 1, opts->gen.scratch1, SZ_B); } else { sub_ir(code, 1, opts->gen.scratch1, SZ_B); } call(code, (code_ptr) (inst->op == M68K_ABCD ? bcd_add : bcd_sub)); reg_to_flag(opts, CH, FLAG_C); reg_to_flag(opts, CH, FLAG_X); cmp_ir(code, 0, opts->gen.scratch1, SZ_B); jcc(code, CC_Z, code->cur + 4); set_flag(opts, 0, FLAG_Z); if (dst_op->base != opts->gen.scratch1) { if (dst_op->mode == MODE_REG_DIRECT) { mov_rr(code, opts->gen.scratch1, dst_op->base, SZ_B); } else { mov_rrdisp(code, opts->gen.scratch1, dst_op->base, dst_op->disp, SZ_B); } } m68k_save_result(inst, opts); } void translate_m68k_sl(m68k_options *opts, m68kinst *inst, host_ea *src_op, host_ea *dst_op) { translate_shift(opts, inst, src_op, dst_op, shl_ir, shl_irdisp, shl_clr, shl_clrdisp, shr_ir, shr_irdisp); } void translate_m68k_asr(m68k_options *opts, m68kinst *inst, host_ea *src_op, host_ea *dst_op) { translate_shift(opts, inst, src_op, dst_op, sar_ir, sar_irdisp, sar_clr, sar_clrdisp, NULL, NULL); } void translate_m68k_lsr(m68k_options *opts, m68kinst *inst, host_ea *src_op, host_ea *dst_op) { translate_shift(opts, inst, src_op, dst_op, shr_ir, shr_irdisp, shr_clr, shr_clrdisp, shl_ir, shl_irdisp); } void translate_m68k_bit(m68k_options *opts, m68kinst *inst, host_ea *src_op, host_ea *dst_op) { code_info *code = &opts->gen.code; cycles(&opts->gen, inst->extra.size == OPSIZE_BYTE ? 4 : ( inst->op == M68K_BTST ? 6 : (inst->op == M68K_BCLR ? 10 : 8)) ); if (src_op->mode == MODE_IMMED) { if (inst->extra.size == OPSIZE_BYTE) { src_op->disp &= 0x7; } if (dst_op->mode == MODE_REG_DIRECT) { op_ir(code, inst, src_op->disp, dst_op->base, inst->extra.size); } else { op_irdisp(code, inst, src_op->disp, dst_op->base, dst_op->disp, inst->extra.size); } } else { if (src_op->mode == MODE_REG_DISPLACE8 || (inst->dst.addr_mode != MODE_REG && src_op->base != opts->gen.scratch1 && src_op->base != opts->gen.scratch2)) { if (dst_op->base == opts->gen.scratch1) { push_r(code, opts->gen.scratch2); if (src_op->mode == MODE_REG_DIRECT) { mov_rr(code, src_op->base, opts->gen.scratch2, SZ_B); } else { mov_rdispr(code, src_op->base, src_op->disp, opts->gen.scratch2, SZ_B); } src_op->base = opts->gen.scratch2; } else { if (src_op->mode == MODE_REG_DIRECT) { mov_rr(code, src_op->base, opts->gen.scratch1, SZ_B); } else { mov_rdispr(code, src_op->base, src_op->disp, opts->gen.scratch1, SZ_B); } src_op->base = opts->gen.scratch1; } } uint8_t size = inst->extra.size; if (dst_op->mode == MODE_REG_DISPLACE8) { if (src_op->base != opts->gen.scratch1 && src_op->base != opts->gen.scratch2) { if (src_op->mode == MODE_REG_DIRECT) { mov_rr(code, src_op->base, opts->gen.scratch1, SZ_D); } else { mov_rdispr(code, src_op->base, src_op->disp, opts->gen.scratch1, SZ_D); src_op->mode = MODE_REG_DIRECT; } src_op->base = opts->gen.scratch1; } //b### with register destination is modulo 32 //x86 with a memory destination isn't modulo anything //so use an and here to force the value to be modulo 32 and_ir(code, 31, opts->gen.scratch1, SZ_D); } else if(inst->dst.addr_mode != MODE_REG) { //b### with memory destination is modulo 8 //x86-64 doesn't support 8-bit bit operations //so we fake it by forcing the bit number to be modulo 8 and_ir(code, 7, src_op->base, SZ_D); size = SZ_D; } if (dst_op->mode == MODE_REG_DIRECT) { op_rr(code, inst, src_op->base, dst_op->base, size); } else { op_rrdisp(code, inst, src_op->base, dst_op->base, dst_op->disp, size); } if (src_op->base == opts->gen.scratch2) { pop_r(code, opts->gen.scratch2); } } //x86 sets the carry flag to the value of the bit tested //68K sets the zero flag to the complement of the bit tested set_flag_cond(opts, CC_NC, FLAG_Z); if (inst->op != M68K_BTST) { m68k_save_result(inst, opts); } } void translate_m68k_chk(m68k_options *opts, m68kinst *inst, host_ea *src_op, host_ea *dst_op) { code_info *code = &opts->gen.code; cycles(&opts->gen, 6); if (dst_op->mode == MODE_REG_DIRECT) { cmp_ir(code, 0, dst_op->base, inst->extra.size); } else { cmp_irdisp(code, 0, dst_op->base, dst_op->disp, inst->extra.size); } uint32_t isize; switch(inst->src.addr_mode) { case MODE_AREG_DISPLACE: case MODE_AREG_INDEX_DISP8: case MODE_ABSOLUTE_SHORT: case MODE_PC_INDEX_DISP8: case MODE_PC_DISPLACE: case MODE_IMMEDIATE: isize = 4; break; case MODE_ABSOLUTE: isize = 6; break; default: isize = 2; } //make sure we won't start a new chunk in the middle of these branches check_alloc_code(code, MAX_INST_LEN * 11); code_ptr passed = code->cur + 1; jcc(code, CC_GE, code->cur + 2); set_flag(opts, 1, FLAG_N); mov_ir(code, VECTOR_CHK, opts->gen.scratch2, SZ_D); mov_ir(code, inst->address+isize, opts->gen.scratch1, SZ_D); jmp(code, opts->trap); *passed = code->cur - (passed+1); if (dst_op->mode == MODE_REG_DIRECT) { if (src_op->mode == MODE_REG_DIRECT) { cmp_rr(code, src_op->base, dst_op->base, inst->extra.size); } else if(src_op->mode == MODE_REG_DISPLACE8) { cmp_rdispr(code, src_op->base, src_op->disp, dst_op->base, inst->extra.size); } else { cmp_ir(code, src_op->disp, dst_op->base, inst->extra.size); } } else if(dst_op->mode == MODE_REG_DISPLACE8) { if (src_op->mode == MODE_REG_DIRECT) { cmp_rrdisp(code, src_op->base, dst_op->base, dst_op->disp, inst->extra.size); } else { cmp_irdisp(code, src_op->disp, dst_op->base, dst_op->disp, inst->extra.size); } } passed = code->cur + 1; jcc(code, CC_LE, code->cur + 2); set_flag(opts, 0, FLAG_N); mov_ir(code, VECTOR_CHK, opts->gen.scratch2, SZ_D); mov_ir(code, inst->address+isize, opts->gen.scratch1, SZ_D); jmp(code, opts->trap); *passed = code->cur - (passed+1); cycles(&opts->gen, 4); } void translate_m68k_div(m68k_options *opts, m68kinst *inst, host_ea *src_op, host_ea *dst_op) { code_info *code = &opts->gen.code; check_alloc_code(code, MAX_NATIVE_SIZE); //TODO: cycle exact division cycles(&opts->gen, inst->op == M68K_DIVS ? 158 : 140); set_flag(opts, 0, FLAG_C); push_r(code, RDX); push_r(code, RAX); if (dst_op->mode == MODE_REG_DIRECT) { mov_rr(code, dst_op->base, RAX, SZ_D); } else { mov_rdispr(code, dst_op->base, dst_op->disp, RAX, SZ_D); } if (src_op->mode == MODE_IMMED) { mov_ir(code, (src_op->disp & 0x8000) && inst->op == M68K_DIVS ? src_op->disp | 0xFFFF0000 : src_op->disp, opts->gen.scratch2, SZ_D); } else if (src_op->mode == MODE_REG_DIRECT) { if (inst->op == M68K_DIVS) { movsx_rr(code, src_op->base, opts->gen.scratch2, SZ_W, SZ_D); } else { movzx_rr(code, src_op->base, opts->gen.scratch2, SZ_W, SZ_D); } } else if (src_op->mode == MODE_REG_DISPLACE8) { if (inst->op == M68K_DIVS) { movsx_rdispr(code, src_op->base, src_op->disp, opts->gen.scratch2, SZ_W, SZ_D); } else { movzx_rdispr(code, src_op->base, src_op->disp, opts->gen.scratch2, SZ_W, SZ_D); } } cmp_ir(code, 0, opts->gen.scratch2, SZ_D); check_alloc_code(code, 6*MAX_INST_LEN); code_ptr not_zero = code->cur + 1; jcc(code, CC_NZ, code->cur + 2); pop_r(code, RAX); pop_r(code, RDX); mov_ir(code, VECTOR_INT_DIV_ZERO, opts->gen.scratch2, SZ_D); mov_ir(code, inst->address+2, opts->gen.scratch1, SZ_D); jmp(code, opts->trap); *not_zero = code->cur - (not_zero+1); if (inst->op == M68K_DIVS) { cdq(code); } else { xor_rr(code, RDX, RDX, SZ_D); } if (inst->op == M68K_DIVS) { idiv_r(code, opts->gen.scratch2, SZ_D); } else { div_r(code, opts->gen.scratch2, SZ_D); } code_ptr skip_sec_check, norm_off; if (inst->op == M68K_DIVS) { cmp_ir(code, 0x8000, RAX, SZ_D); skip_sec_check = code->cur + 1; jcc(code, CC_GE, code->cur + 2); cmp_ir(code, -0x8000, RAX, SZ_D); norm_off = code->cur + 1; jcc(code, CC_L, code->cur + 2); } else { cmp_ir(code, 0x10000, RAX, SZ_D); norm_off = code->cur + 1; jcc(code, CC_NC, code->cur + 2); } if (dst_op->mode == MODE_REG_DIRECT) { mov_rr(code, RDX, dst_op->base, SZ_W); shl_ir(code, 16, dst_op->base, SZ_D); mov_rr(code, RAX, dst_op->base, SZ_W); } else { mov_rrdisp(code, RDX, dst_op->base, dst_op->disp, SZ_W); shl_irdisp(code, 16, dst_op->base, dst_op->disp, SZ_D); mov_rrdisp(code, RAX, dst_op->base, dst_op->disp, SZ_W); } cmp_ir(code, 0, RAX, SZ_W); pop_r(code, RAX); pop_r(code, RDX); update_flags(opts, V0|Z|N); code_ptr end_off = code->cur + 1; jmp(code, code->cur + 2); *norm_off = code->cur - (norm_off + 1); if (inst->op == M68K_DIVS) { *skip_sec_check = code->cur - (skip_sec_check+1); } pop_r(code, RAX); pop_r(code, RDX); set_flag(opts, 1, FLAG_V); *end_off = code->cur - (end_off + 1); } void translate_m68k_exg(m68k_options *opts, m68kinst *inst, host_ea *src_op, host_ea *dst_op) { code_info *code = &opts->gen.code; cycles(&opts->gen, 6); if (dst_op->mode == MODE_REG_DIRECT) { mov_rr(code, dst_op->base, opts->gen.scratch2, SZ_D); if (src_op->mode == MODE_REG_DIRECT) { mov_rr(code, src_op->base, dst_op->base, SZ_D); mov_rr(code, opts->gen.scratch2, src_op->base, SZ_D); } else { mov_rdispr(code, src_op->base, src_op->disp, dst_op->base, SZ_D); mov_rrdisp(code, opts->gen.scratch2, src_op->base, src_op->disp, SZ_D); } } else { mov_rdispr(code, dst_op->base, dst_op->disp, opts->gen.scratch2, SZ_D); if (src_op->mode == MODE_REG_DIRECT) { mov_rrdisp(code, src_op->base, dst_op->base, dst_op->disp, SZ_D); mov_rr(code, opts->gen.scratch2, src_op->base, SZ_D); } else { mov_rdispr(code, src_op->base, src_op->disp, opts->gen.scratch1, SZ_D); mov_rrdisp(code, opts->gen.scratch1, dst_op->base, dst_op->disp, SZ_D); mov_rrdisp(code, opts->gen.scratch2, src_op->base, src_op->disp, SZ_D); } } } void translate_m68k_mul(m68k_options *opts, m68kinst *inst, host_ea *src_op, host_ea *dst_op) { code_info *code = &opts->gen.code; cycles(&opts->gen, 70); //TODO: Calculate the actual value based on the value of the <ea> parameter if (src_op->mode == MODE_IMMED) { mov_ir(code, inst->op == M68K_MULU ? (src_op->disp & 0xFFFF) : ((src_op->disp & 0x8000) ? src_op->disp | 0xFFFF0000 : src_op->disp), opts->gen.scratch1, SZ_D); } else if (src_op->mode == MODE_REG_DIRECT) { if (inst->op == M68K_MULS) { movsx_rr(code, src_op->base, opts->gen.scratch1, SZ_W, SZ_D); } else { movzx_rr(code, src_op->base, opts->gen.scratch1, SZ_W, SZ_D); } } else { if (inst->op == M68K_MULS) { movsx_rdispr(code, src_op->base, src_op->disp, opts->gen.scratch1, SZ_W, SZ_D); } else { movzx_rdispr(code, src_op->base, src_op->disp, opts->gen.scratch1, SZ_W, SZ_D); } } uint8_t dst_reg; if (dst_op->mode == MODE_REG_DIRECT) { dst_reg = dst_op->base; if (inst->op == M68K_MULS) { movsx_rr(code, dst_reg, dst_reg, SZ_W, SZ_D); } else { movzx_rr(code, dst_reg, dst_reg, SZ_W, SZ_D); } } else { dst_reg = opts->gen.scratch2; if (inst->op == M68K_MULS) { movsx_rdispr(code, dst_op->base, dst_op->disp, opts->gen.scratch2, SZ_W, SZ_D); } else { movzx_rdispr(code, dst_op->base, dst_op->disp, opts->gen.scratch2, SZ_W, SZ_D); } } imul_rr(code, opts->gen.scratch1, dst_reg, SZ_D); if (dst_op->mode == MODE_REG_DISPLACE8) { mov_rrdisp(code, dst_reg, dst_op->base, dst_op->disp, SZ_D); } cmp_ir(code, 0, dst_reg, SZ_D); update_flags(opts, N|Z|V0|C0); } void translate_m68k_negx(m68k_options *opts, m68kinst *inst, host_ea *src_op, host_ea *dst_op) { code_info *code = &opts->gen.code; cycles(&opts->gen, BUS); if (dst_op->mode == MODE_REG_DIRECT) { if (dst_op->base == opts->gen.scratch1) { push_r(code, opts->gen.scratch2); xor_rr(code, opts->gen.scratch2, opts->gen.scratch2, inst->extra.size); flag_to_carry(opts, FLAG_X); sbb_rr(code, dst_op->base, opts->gen.scratch2, inst->extra.size); mov_rr(code, opts->gen.scratch2, dst_op->base, inst->extra.size); pop_r(code, opts->gen.scratch2); } else { xor_rr(code, opts->gen.scratch1, opts->gen.scratch1, inst->extra.size); flag_to_carry(opts, FLAG_X); sbb_rr(code, dst_op->base, opts->gen.scratch1, inst->extra.size); mov_rr(code, opts->gen.scratch1, dst_op->base, inst->extra.size); } } else { xor_rr(code, opts->gen.scratch1, opts->gen.scratch1, inst->extra.size); flag_to_carry(opts, FLAG_X); sbb_rdispr(code, dst_op->base, dst_op->disp, opts->gen.scratch1, inst->extra.size); mov_rrdisp(code, opts->gen.scratch1, dst_op->base, dst_op->disp, inst->extra.size); } set_flag_cond(opts, CC_C, FLAG_C); code_ptr after_flag_set = code->cur + 1; jcc(code, CC_Z, code->cur + 2); set_flag(opts, 0, FLAG_Z); *after_flag_set = code->cur - (after_flag_set+1); set_flag_cond(opts, CC_S, FLAG_N); set_flag_cond(opts, CC_O, FLAG_V); if (opts->flag_regs[FLAG_C] >= 0) { flag_to_flag(opts, FLAG_C, FLAG_X); } else { set_flag_cond(opts, CC_C, FLAG_X); } m68k_save_result(inst, opts); } void translate_m68k_rot(m68k_options *opts, m68kinst *inst, host_ea *src_op, host_ea *dst_op) { code_info *code = &opts->gen.code; int32_t init_flags = C|V0; if (inst->src.addr_mode == MODE_UNUSED) { cycles(&opts->gen, BUS); //Memory rotate if (inst->op == M68K_ROXR || inst->op == M68K_ROXL) { flag_to_carry(opts, FLAG_X); init_flags |= X; } op_ir(code, inst, 1, dst_op->base, inst->extra.size); update_flags(opts, init_flags); cmp_ir(code, 0, dst_op->base, inst->extra.size); update_flags(opts, Z|N); m68k_save_result(inst, opts); } else { if (src_op->mode == MODE_IMMED) { cycles(&opts->gen, (inst->extra.size == OPSIZE_LONG ? 8 : 6) + src_op->disp*2); if (inst->op == M68K_ROXR || inst->op == M68K_ROXL) { flag_to_carry(opts, FLAG_X); init_flags |= X; } if (dst_op->mode == MODE_REG_DIRECT) { op_ir(code, inst, src_op->disp, dst_op->base, inst->extra.size); } else { op_irdisp(code, inst, src_op->disp, dst_op->base, dst_op->disp, inst->extra.size); } update_flags(opts, init_flags); } else { if (src_op->mode == MODE_REG_DIRECT) { if (src_op->base != opts->gen.scratch1) { mov_rr(code, src_op->base, opts->gen.scratch1, SZ_B); } } else { mov_rdispr(code, src_op->base, src_op->disp, opts->gen.scratch1, SZ_B); } and_ir(code, 63, opts->gen.scratch1, SZ_D); code_ptr zero_off = code->cur + 1; jcc(code, CC_Z, code->cur + 2); add_rr(code, opts->gen.scratch1, CYCLES, SZ_D); add_rr(code, opts->gen.scratch1, CYCLES, SZ_D); cmp_ir(code, 32, opts->gen.scratch1, SZ_B); code_ptr norm_off = code->cur + 1; jcc(code, CC_L, code->cur + 2); if (inst->op == M68K_ROXR || inst->op == M68K_ROXL) { flag_to_carry(opts, FLAG_X); init_flags |= X; } else { sub_ir(code, 32, opts->gen.scratch1, SZ_B); } if (dst_op->mode == MODE_REG_DIRECT) { op_ir(code, inst, 31, dst_op->base, inst->extra.size); op_ir(code, inst, 1, dst_op->base, inst->extra.size); } else { op_irdisp(code, inst, 31, dst_op->base, dst_op->disp, inst->extra.size); op_irdisp(code, inst, 1, dst_op->base, dst_op->disp, inst->extra.size); } if (inst->op == M68K_ROXR || inst->op == M68K_ROXL) { set_flag_cond(opts, CC_C, FLAG_X); sub_ir(code, 32, opts->gen.scratch1, SZ_B); *norm_off = code->cur - (norm_off+1); flag_to_carry(opts, FLAG_X); } else { *norm_off = code->cur - (norm_off+1); } if (dst_op->mode == MODE_REG_DIRECT) { op_r(code, inst, dst_op->base, inst->extra.size); } else { op_rdisp(code, inst, dst_op->base, dst_op->disp, inst->extra.size); } update_flags(opts, init_flags); code_ptr end_off = code->cur + 1; jmp(code, code->cur + 2); *zero_off = code->cur - (zero_off+1); if (inst->op == M68K_ROXR || inst->op == M68K_ROXL) { //Carry flag is set to X flag when count is 0, this is different from ROR/ROL flag_to_flag(opts, FLAG_X, FLAG_C); } else { set_flag(opts, 0, FLAG_C); } *end_off = code->cur - (end_off+1); } if (dst_op->mode == MODE_REG_DIRECT) { cmp_ir(code, 0, dst_op->base, inst->extra.size); } else { cmp_irdisp(code, 0, dst_op->base, dst_op->disp, inst->extra.size); } update_flags(opts, Z|N); } } void translate_m68k_illegal(m68k_options *opts, m68kinst *inst) { code_info *code = &opts->gen.code; call(code, opts->gen.save_context); #ifdef X86_64 mov_rr(code, opts->gen.context_reg, RDI, SZ_PTR); #else push_r(code, opts->gen.context_reg); #endif call(code, (code_ptr)print_regs_exit); } #define BIT_SUPERVISOR 5 void translate_m68k_andi_ori_ccr_sr(m68k_options *opts, m68kinst *inst) { code_info *code = &opts->gen.code; cycles(&opts->gen, 20); //TODO: If ANDI to SR, trap if not in supervisor mode uint32_t flag_mask = 0; uint32_t base_flag = inst->op == M68K_ANDI_SR || inst->op == M68K_ANDI_CCR ? X0 : X1; for (int i = 0; i < 5; i++) { if ((base_flag == X0) ^ (inst->src.params.immed & 1 << i) > 0) { flag_mask |= base_flag << ((4 - i) * 3); } } update_flags(opts, flag_mask); if (inst->op == M68K_ANDI_SR || inst->op == M68K_ORI_SR) { if (inst->op == M68K_ANDI_SR) { and_irdisp(code, inst->src.params.immed >> 8, opts->gen.context_reg, offsetof(m68k_context, status), SZ_B); } else { or_irdisp(code, inst->src.params.immed >> 8, opts->gen.context_reg, offsetof(m68k_context, status), SZ_B); } if ((base_flag == X0) ^ (((inst->src.params.immed >> 8) & (1 << BIT_SUPERVISOR)) > 0)) { //leave supervisor mode swap_ssp_usp(opts); } if ((inst->op == M68K_ANDI_SR && (inst->src.params.immed & 0x700) != 0x700) || (inst->op == M68K_ORI_SR && inst->src.params.immed & 0x700)) { call(code, opts->do_sync); } } } void translate_m68k_eori_ccr_sr(m68k_options *opts, m68kinst *inst) { code_info *code = &opts->gen.code; cycles(&opts->gen, 20); //TODO: If ANDI to SR, trap if not in supervisor mode if (inst->src.params.immed & 0x1) { xor_flag(opts, 1, FLAG_C); } if (inst->src.params.immed & 0x2) { xor_flag(opts, 1, FLAG_V); } if (inst->src.params.immed & 0x4) { xor_flag(opts, 1, FLAG_Z); } if (inst->src.params.immed & 0x8) { xor_flag(opts, 1, FLAG_N); } if (inst->src.params.immed & 0x10) { xor_flag(opts, 1, FLAG_X); } if (inst->op == M68K_ORI_SR) { xor_irdisp(code, inst->src.params.immed >> 8, opts->gen.context_reg, offsetof(m68k_context, status), SZ_B); if (inst->src.params.immed & 0x700) { call(code, opts->do_sync); } } } void set_all_flags(m68k_options *opts, uint8_t flags) { uint32_t flag_mask = flags & 0x10 ? X1 : X0; flag_mask |= flags & 0x8 ? N1 : N0; flag_mask |= flags & 0x4 ? Z1 : Z0; flag_mask |= flags & 0x2 ? V1 : V0; flag_mask |= flags & 0x1 ? C1 : C0; update_flags(opts, flag_mask); } void translate_m68k_move_ccr_sr(m68k_options *opts, m68kinst *inst, host_ea *src_op, host_ea *dst_op) { code_info *code = &opts->gen.code; //TODO: Privilege check for MOVE to SR if (src_op->mode == MODE_IMMED) { set_all_flags(opts, src_op->disp); if (inst->op == M68K_MOVE_SR) { mov_irdisp(code, (src_op->disp >> 8), opts->gen.context_reg, offsetof(m68k_context, status), SZ_B); if (!((inst->src.params.immed >> 8) & (1 << BIT_SUPERVISOR))) { //leave supervisor mode swap_ssp_usp(opts); } call(code, opts->do_sync); } cycles(&opts->gen, 12); } else { if (src_op->base != opts->gen.scratch1) { if (src_op->mode == MODE_REG_DIRECT) { mov_rr(code, src_op->base, opts->gen.scratch1, SZ_W); } else { mov_rdispr(code, src_op->base, src_op->disp, opts->gen.scratch1, SZ_W); } } call(code, inst->op == M68K_MOVE_SR ? opts->set_sr : opts->set_ccr); cycles(&opts->gen, 12); } } void translate_m68k_stop(m68k_options *opts, m68kinst *inst) { //TODO: Trap if not in system mode //manual says 4 cycles, but it has to be at least 8 since it's a 2-word instruction //possibly even 12 since that's how long MOVE to SR takes //On further thought prefetch + the fact that this stops the CPU may make //Motorola's accounting make sense here code_info *code = &opts->gen.code; cycles(&opts->gen, BUS*2); set_all_flags(opts, inst->src.params.immed); mov_irdisp(code, (inst->src.params.immed >> 8), opts->gen.context_reg, offsetof(m68k_context, status), SZ_B); if (!((inst->src.params.immed >> 8) & (1 << BIT_SUPERVISOR))) { //leave supervisor mode swap_ssp_usp(opts); } code_ptr loop_top = code->cur; call(code, opts->do_sync); cmp_rr(code, opts->gen.limit, opts->gen.cycles, SZ_D); code_ptr normal_cycle_up = code->cur + 1; jcc(code, CC_A, code->cur + 2); cycles(&opts->gen, BUS); code_ptr after_cycle_up = code->cur + 1; jmp(code, code->cur + 2); *normal_cycle_up = code->cur - (normal_cycle_up + 1); mov_rr(code, opts->gen.limit, opts->gen.cycles, SZ_D); *after_cycle_up = code->cur - (after_cycle_up+1); cmp_rdispr(code, opts->gen.context_reg, offsetof(m68k_context, int_cycle), opts->gen.cycles, SZ_D); jcc(code, CC_C, loop_top); } void translate_m68k_move_from_sr(m68k_options *opts, m68kinst *inst, host_ea *src_op, host_ea *dst_op) { code_info *code = &opts->gen.code; //TODO: Trap if not in system mode call(code, opts->get_sr); if (dst_op->mode == MODE_REG_DIRECT) { mov_rr(code, opts->gen.scratch1, dst_op->base, SZ_W); } else { mov_rrdisp(code, opts->gen.scratch1, dst_op->base, dst_op->disp, SZ_W); } m68k_save_result(inst, opts); } void translate_m68k_reset(m68k_options *opts, m68kinst *inst) { code_info *code = &opts->gen.code; call(code, opts->gen.save_context); #ifdef X86_64 mov_rr(code, opts->gen.context_reg, RDI, SZ_PTR); #else push_r(code, opts->gen.context_reg); #endif call(code, (code_ptr)print_regs_exit); } void translate_m68k_rte(m68k_options *opts, m68kinst *inst) { code_info *code = &opts->gen.code; //TODO: Trap if not in system mode //Read saved SR areg_to_native(opts, 7, opts->gen.scratch1); call(code, opts->read_16); addi_areg(opts, 2, 7); call(code, opts->set_sr); //Read saved PC areg_to_native(opts, 7, opts->gen.scratch1); call(code, opts->read_32); addi_areg(opts, 4, 7); //Check if we've switched to user mode and swap stack pointers if needed bt_irdisp(code, 5, opts->gen.context_reg, offsetof(m68k_context, status), SZ_B); code_ptr end_off = code->cur + 1; jcc(code, CC_C, code->cur + 2); swap_ssp_usp(opts); *end_off = code->cur - (end_off+1); //Get native address, sync components, recalculate integer points and jump to returned address call(code, opts->native_addr_and_sync); jmp_r(code, opts->gen.scratch1); } void translate_out_of_bounds(code_info *code) { xor_rr(code, RDI, RDI, SZ_D); #ifdef X86_32 push_r(code, RDI); #endif call(code, (code_ptr)exit); } void check_code_prologue(code_info *code) { check_alloc_code(code, MAX_INST_LEN*4); }; void nop_fill_or_jmp_next(code_info *code, code_ptr old_end, code_ptr next_inst) { if (next_inst == old_end && next_inst - code->cur < 2) { while (code->cur < old_end) { *(code->cur++) = 0x90; //NOP } } else { jmp(code, next_inst); } } m68k_context * m68k_handle_code_write(uint32_t address, m68k_context * context) { uint32_t inst_start = get_instruction_start(context->native_code_map, address | 0xFF0000); if (inst_start) { m68k_options * options = context->options; code_info *code = &options->gen.code; code_ptr dst = get_native_address(context->native_code_map, inst_start); code_info orig; orig.cur = dst; orig.last = dst + 128; mov_ir(&orig, inst_start, options->gen.scratch2, SZ_D); if (!options->retrans_stub) { options->retrans_stub = code->cur; call(code, options->gen.save_context); push_r(code, options->gen.context_reg); #ifdef X86_32 push_r(code, options->gen.context_reg); push_r(code, options->gen.scratch2); #endif call(code, (code_ptr)m68k_retranslate_inst); #ifdef X86_32 add_ir(code, 8, RSP, SZ_D); #endif pop_r(code, options->gen.context_reg); mov_rr(code, RAX, options->gen.scratch1, SZ_PTR); call(code, options->gen.load_context); jmp_r(code, options->gen.scratch1); } jmp(&orig, options->retrans_stub); } return context; } void insert_breakpoint(m68k_context * context, uint32_t address, code_ptr bp_handler) { static code_ptr bp_stub = NULL; m68k_options * opts = context->options; code_info native; native.cur = get_native_address_trans(context, address); native.last = native.cur + 128; code_ptr start_native = native.cur; mov_ir(&native, address, opts->gen.scratch1, SZ_D); if (!bp_stub) { code_info *code = &opts->gen.code; check_alloc_code(code, 5); bp_stub = code->cur; call(&native, bp_stub); //Calculate length of prologue check_cycles_int(&opts->gen, address); int check_int_size = code->cur-bp_stub; code->cur = bp_stub; //Save context and call breakpoint handler call(code, opts->gen.save_context); push_r(code, opts->gen.scratch1); #ifdef X86_64 mov_rr(code, opts->gen.context_reg, RDI, SZ_PTR); mov_rr(code, opts->gen.scratch1, RSI, SZ_D); #else push_r(code, opts->gen.scratch1); push_r(code, opts->gen.context_reg); #endif call(code, bp_handler); #ifdef X86_32 add_ir(code, 8, RSP, SZ_D); #endif mov_rr(code, RAX, opts->gen.context_reg, SZ_PTR); //Restore context call(code, opts->gen.load_context); pop_r(code, opts->gen.scratch1); //do prologue stuff cmp_rr(code, opts->gen.cycles, opts->gen.limit, SZ_D); code_ptr jmp_off = code->cur + 1; jcc(code, CC_NC, code->cur + 7); call(code, opts->gen.handle_cycle_limit_int); *jmp_off = code->cur - (jmp_off+1); //jump back to body of translated instruction pop_r(code, opts->gen.scratch1); add_ir(code, check_int_size - (native.cur-start_native), opts->gen.scratch1, SZ_PTR); jmp_r(code, opts->gen.scratch1); } else { call(&native, bp_stub); } } void init_m68k_opts(m68k_options * opts, memmap_chunk * memmap, uint32_t num_chunks) { memset(opts, 0, sizeof(*opts)); opts->gen.address_size = SZ_D; opts->gen.address_mask = 0xFFFFFF; opts->gen.byte_swap = 1; opts->gen.max_address = 0x1000000; opts->gen.bus_cycles = BUS; opts->gen.mem_ptr_off = offsetof(m68k_context, mem_pointers); opts->gen.ram_flags_off = offsetof(m68k_context, ram_code_flags); for (int i = 0; i < 8; i++) { opts->dregs[i] = opts->aregs[i] = -1; } #ifdef X86_64 opts->dregs[0] = R10; opts->dregs[1] = R11; opts->dregs[2] = R12; opts->dregs[3] = R8; opts->aregs[0] = R13; opts->aregs[1] = R14; opts->aregs[2] = R9; opts->aregs[7] = R15; opts->flag_regs[0] = -1; opts->flag_regs[1] = RBX; opts->flag_regs[2] = RDX; opts->flag_regs[3] = BH; opts->flag_regs[4] = DH; opts->gen.scratch2 = RDI; #else opts->dregs[0] = RDX; opts->aregs[7] = RDI; for (int i = 0; i < 5; i++) { opts->flag_regs[i] = -1; } opts->gen.scratch2 = RBX; #endif opts->gen.context_reg = RSI; opts->gen.cycles = RAX; opts->gen.limit = RBP; opts->gen.scratch1 = RCX; opts->gen.native_code_map = malloc(sizeof(native_map_slot) * NATIVE_MAP_CHUNKS); memset(opts->gen.native_code_map, 0, sizeof(native_map_slot) * NATIVE_MAP_CHUNKS); opts->gen.deferred = NULL; opts->gen.ram_inst_sizes = malloc(sizeof(uint8_t *) * 64); memset(opts->gen.ram_inst_sizes, 0, sizeof(uint8_t *) * 64); code_info *code = &opts->gen.code; init_code_info(code); opts->gen.save_context = code->cur; for (int i = 0; i < 5; i++) if (opts->flag_regs[i] >= 0) { mov_rrdisp(code, opts->flag_regs[i], opts->gen.context_reg, offsetof(m68k_context, flags) + i, SZ_B); } for (int i = 0; i < 8; i++) { if (opts->dregs[i] >= 0) { mov_rrdisp(code, opts->dregs[i], opts->gen.context_reg, offsetof(m68k_context, dregs) + sizeof(uint32_t) * i, SZ_D); } if (opts->aregs[i] >= 0) { mov_rrdisp(code, opts->aregs[i], opts->gen.context_reg, offsetof(m68k_context, aregs) + sizeof(uint32_t) * i, SZ_D); } } mov_rrdisp(code, opts->gen.cycles, opts->gen.context_reg, offsetof(m68k_context, current_cycle), SZ_D); retn(code); opts->gen.load_context = code->cur; for (int i = 0; i < 5; i++) if (opts->flag_regs[i] >= 0) { mov_rdispr(code, opts->gen.context_reg, offsetof(m68k_context, flags) + i, opts->flag_regs[i], SZ_B); } for (int i = 0; i < 8; i++) { if (opts->dregs[i] >= 0) { mov_rdispr(code, opts->gen.context_reg, offsetof(m68k_context, dregs) + sizeof(uint32_t) * i, opts->dregs[i], SZ_D); } if (opts->aregs[i] >= 0) { mov_rdispr(code, opts->gen.context_reg, offsetof(m68k_context, aregs) + sizeof(uint32_t) * i, opts->aregs[i], SZ_D); } } mov_rdispr(code, opts->gen.context_reg, offsetof(m68k_context, current_cycle), CYCLES, SZ_D); mov_rdispr(code, opts->gen.context_reg, offsetof(m68k_context, target_cycle), LIMIT, SZ_D); retn(code); opts->start_context = (start_fun)code->cur; #ifdef X86_64 if (opts->gen.scratch2 != RDI) { mov_rr(code, RDI, opts->gen.scratch2, SZ_PTR); } //save callee save registers push_r(code, RBP); push_r(code, R12); push_r(code, R13); push_r(code, R14); push_r(code, R15); #else //save callee save registers push_r(code, RBP); push_r(code, RBX); push_r(code, RSI); push_r(code, RDI); mov_rdispr(code, RSP, 20, opts->gen.scratch2, SZ_D); mov_rdispr(code, RSP, 24, opts->gen.context_reg, SZ_D); #endif call(code, opts->gen.load_context); call_r(code, opts->gen.scratch2); call(code, opts->gen.save_context); #ifdef X86_64 //restore callee save registers pop_r(code, R15); pop_r(code, R14); pop_r(code, R13); pop_r(code, R12); pop_r(code, RBP); #else pop_r(code, RDI); pop_r(code, RSI); pop_r(code, RBX); pop_r(code, RBP); #endif retn(code); opts->native_addr = code->cur; call(code, opts->gen.save_context); push_r(code, opts->gen.context_reg); #ifdef X86_64 mov_rr(code, opts->gen.context_reg, RDI, SZ_PTR); //move context to 1st arg reg mov_rr(code, opts->gen.scratch1, RSI, SZ_D); //move address to 2nd arg reg #else push_r(code, opts->gen.scratch1); push_r(code, opts->gen.context_reg); #endif call(code, (code_ptr)get_native_address_trans); #ifdef X86_32 add_ir(code, 8, RSP, SZ_D); #endif mov_rr(code, RAX, opts->gen.scratch1, SZ_PTR); //move result to scratch reg pop_r(code, opts->gen.context_reg); call(code, opts->gen.load_context); retn(code); opts->native_addr_and_sync = code->cur; call(code, opts->gen.save_context); push_r(code, opts->gen.scratch1); #ifdef X86_64 mov_rr(code, opts->gen.context_reg, RDI, SZ_PTR); xor_rr(code, RSI, RSI, SZ_D); test_ir(code, 8, RSP, SZ_PTR); //check stack alignment code_ptr do_adjust_rsp = code->cur + 1; jcc(code, CC_NZ, code->cur + 2); call(code, (code_ptr)sync_components); code_ptr no_adjust_rsp = code->cur + 1; jmp(code, code->cur + 2); *do_adjust_rsp = code->cur - (do_adjust_rsp+1); sub_ir(code, 8, RSP, SZ_PTR); call(code, (code_ptr)sync_components); add_ir(code, 8, RSP, SZ_PTR); *no_adjust_rsp = code->cur - (no_adjust_rsp+1); pop_r(code, RSI); push_r(code, RAX); mov_rr(code, RAX, RDI, SZ_PTR); call(code, (code_ptr)get_native_address_trans); #else //TODO: Add support for pushing a constant in gen_x86 xor_rr(code, RAX, RAX, SZ_D); push_r(code, RAX); push_r(code, opts->gen.context_reg); call(code, (code_ptr)sync_components); add_ir(code, 8, RSP, SZ_D); pop_r(code, RSI); //restore saved address from opts->gen.scratch1 push_r(code, RAX); //save context pointer for later push_r(code, RSI); //2nd arg -- address push_r(code, RAX); //1st arg -- context pointer call(code, (code_ptr)get_native_address_trans); add_ir(code, 8, RSP, SZ_D); #endif mov_rr(code, RAX, opts->gen.scratch1, SZ_PTR); //move result to scratch reg pop_r(code, opts->gen.context_reg); call(code, opts->gen.load_context); retn(code); opts->gen.handle_cycle_limit = code->cur; cmp_rdispr(code, opts->gen.context_reg, offsetof(m68k_context, sync_cycle), CYCLES, SZ_D); code_ptr skip_sync = code->cur + 1; jcc(code, CC_C, code->cur + 2); opts->do_sync = code->cur; push_r(code, opts->gen.scratch1); push_r(code, opts->gen.scratch2); call(code, opts->gen.save_context); #ifdef X86_64 mov_rr(code, opts->gen.context_reg, RDI, SZ_PTR); xor_rr(code, RSI, RSI, SZ_D); test_ir(code, 8, RSP, SZ_D); code_ptr adjust_rsp = code->cur + 1; jcc(code, CC_NZ, code->cur + 2); call(code, (code_ptr)sync_components); code_ptr no_adjust = code->cur + 1; jmp(code, code->cur + 2); *adjust_rsp = code->cur - (adjust_rsp + 1); sub_ir(code, 8, RSP, SZ_PTR); call(code, (code_ptr)sync_components); add_ir(code, 8, RSP, SZ_PTR); *no_adjust = code->cur - (no_adjust+1); #else //TODO: Add support for pushing a constant in gen_x86 xor_rr(code, RAX, RAX, SZ_D); push_r(code, RAX); push_r(code, opts->gen.context_reg); call(code, (code_ptr)sync_components); add_ir(code, 8, RSP, SZ_D); #endif mov_rr(code, RAX, opts->gen.context_reg, SZ_PTR); call(code, opts->gen.load_context); pop_r(code, opts->gen.scratch2); pop_r(code, opts->gen.scratch1); *skip_sync = code->cur - (skip_sync+1); retn(code); opts->gen.handle_code_write = (code_ptr)m68k_handle_code_write; opts->read_16 = gen_mem_fun(&opts->gen, memmap, num_chunks, READ_16, NULL); opts->read_8 = gen_mem_fun(&opts->gen, memmap, num_chunks, READ_8, NULL); opts->write_16 = gen_mem_fun(&opts->gen, memmap, num_chunks, WRITE_16, NULL); opts->write_8 = gen_mem_fun(&opts->gen, memmap, num_chunks, WRITE_8, NULL); opts->read_32 = code->cur; push_r(code, opts->gen.scratch1); call(code, opts->read_16); mov_rr(code, opts->gen.scratch1, opts->gen.scratch2, SZ_W); pop_r(code, opts->gen.scratch1); push_r(code, opts->gen.scratch2); add_ir(code, 2, opts->gen.scratch1, SZ_D); call(code, opts->read_16); pop_r(code, opts->gen.scratch2); movzx_rr(code, opts->gen.scratch1, opts->gen.scratch1, SZ_W, SZ_D); shl_ir(code, 16, opts->gen.scratch2, SZ_D); or_rr(code, opts->gen.scratch2, opts->gen.scratch1, SZ_D); retn(code); opts->write_32_lowfirst = code->cur; push_r(code, opts->gen.scratch2); push_r(code, opts->gen.scratch1); add_ir(code, 2, opts->gen.scratch2, SZ_D); call(code, opts->write_16); pop_r(code, opts->gen.scratch1); pop_r(code, opts->gen.scratch2); shr_ir(code, 16, opts->gen.scratch1, SZ_D); jmp(code, opts->write_16); opts->write_32_highfirst = code->cur; push_r(code, opts->gen.scratch1); push_r(code, opts->gen.scratch2); shr_ir(code, 16, opts->gen.scratch1, SZ_D); call(code, opts->write_16); pop_r(code, opts->gen.scratch2); pop_r(code, opts->gen.scratch1); add_ir(code, 2, opts->gen.scratch2, SZ_D); jmp(code, opts->write_16); opts->get_sr = code->cur; mov_rdispr(code, opts->gen.context_reg, offsetof(m68k_context, status), opts->gen.scratch1, SZ_B); shl_ir(code, 8, opts->gen.scratch1, SZ_W); if (opts->flag_regs[FLAG_X] >= 0) { mov_rr(code, opts->flag_regs[FLAG_X], opts->gen.scratch1, SZ_B); } else { int8_t offset = offsetof(m68k_context, flags); if (offset) { mov_rdispr(code, opts->gen.context_reg, offset, opts->gen.scratch1, SZ_B); } else { mov_rindr(code, opts->gen.context_reg, opts->gen.scratch1, SZ_B); } } for (int flag = FLAG_N; flag <= FLAG_C; flag++) { shl_ir(code, 1, opts->gen.scratch1, SZ_B); if (opts->flag_regs[flag] >= 0) { or_rr(code, opts->flag_regs[flag], opts->gen.scratch1, SZ_B); } else { or_rdispr(code, opts->gen.context_reg, offsetof(m68k_context, flags) + flag, opts->gen.scratch1, SZ_B); } } retn(code); opts->set_sr = code->cur; for (int flag = FLAG_C; flag >= FLAG_X; flag--) { rcr_ir(code, 1, opts->gen.scratch1, SZ_B); if (opts->flag_regs[flag] >= 0) { setcc_r(code, CC_C, opts->flag_regs[flag]); } else { int8_t offset = offsetof(m68k_context, flags) + flag; if (offset) { setcc_rdisp(code, CC_C, opts->gen.context_reg, offset); } else { setcc_rind(code, CC_C, opts->gen.context_reg); } } } shr_ir(code, 8, opts->gen.scratch1, SZ_W); mov_rrdisp(code, opts->gen.scratch1, opts->gen.context_reg, offsetof(m68k_context, status), SZ_B); retn(code); opts->set_ccr = code->cur; for (int flag = FLAG_C; flag >= FLAG_X; flag--) { rcr_ir(code, 1, opts->gen.scratch1, SZ_B); if (opts->flag_regs[flag] >= 0) { setcc_r(code, CC_C, opts->flag_regs[flag]); } else { int8_t offset = offsetof(m68k_context, flags) + flag; if (offset) { setcc_rdisp(code, CC_C, opts->gen.context_reg, offset); } else { setcc_rind(code, CC_C, opts->gen.context_reg); } } } retn(code); opts->gen.handle_cycle_limit_int = code->cur; cmp_rdispr(code, opts->gen.context_reg, offsetof(m68k_context, int_cycle), CYCLES, SZ_D); code_ptr do_int = code->cur + 1; jcc(code, CC_NC, code->cur + 2); cmp_rdispr(code, opts->gen.context_reg, offsetof(m68k_context, sync_cycle), CYCLES, SZ_D); skip_sync = code->cur + 1; jcc(code, CC_C, code->cur + 2); call(code, opts->gen.save_context); #ifdef X86_64 mov_rr(code, opts->gen.context_reg, RDI, SZ_PTR); mov_rr(code, opts->gen.scratch1, RSI, SZ_D); test_ir(code, 8, RSP, SZ_D); adjust_rsp = code->cur + 1; jcc(code, CC_NZ, code->cur + 2); call(code, (code_ptr)sync_components); no_adjust = code->cur + 1; jmp(code, code->cur + 2); *adjust_rsp = code->cur - (adjust_rsp + 1); sub_ir(code, 8, RSP, SZ_PTR); call(code, (code_ptr)sync_components); add_ir(code, 8, RSP, SZ_PTR); *no_adjust = code->cur - (no_adjust+1); #else push_r(code, opts->gen.scratch1); push_r(code, opts->gen.context_reg); call(code, (code_ptr)sync_components); add_ir(code, 8, RSP, SZ_D); #endif mov_rr(code, RAX, opts->gen.context_reg, SZ_PTR); jmp(code, opts->gen.load_context); *skip_sync = code->cur - (skip_sync+1); retn(code); *do_int = code->cur - (do_int+1); //set target cycle to sync cycle mov_rdispr(code, opts->gen.context_reg, offsetof(m68k_context, sync_cycle), LIMIT, SZ_D); //swap USP and SSP if not already in supervisor mode bt_irdisp(code, 5, opts->gen.context_reg, offsetof(m68k_context, status), SZ_B); code_ptr already_supervisor = code->cur + 1; jcc(code, CC_C, code->cur + 2); swap_ssp_usp(opts); *already_supervisor = code->cur - (already_supervisor+1); //save PC subi_areg(opts, 4, 7); areg_to_native(opts, 7, opts->gen.scratch2); call(code, opts->write_32_lowfirst); //save status register subi_areg(opts, 2, 7); call(code, opts->get_sr); areg_to_native(opts, 7, opts->gen.scratch2); call(code, opts->write_16); //update status register and_irdisp(code, 0xF8, opts->gen.context_reg, offsetof(m68k_context, status), SZ_B); mov_rdispr(code, opts->gen.context_reg, offsetof(m68k_context, int_num), opts->gen.scratch1, SZ_B); or_ir(code, 0x20, opts->gen.scratch1, SZ_B); or_rrdisp(code, opts->gen.scratch1, opts->gen.context_reg, offsetof(m68k_context, status), SZ_B); //calculate interrupt vector address mov_rdispr(code, opts->gen.context_reg, offsetof(m68k_context, int_num), opts->gen.scratch1, SZ_D); mov_rrdisp(code, opts->gen.scratch1, opts->gen.context_reg, offsetof(m68k_context, int_ack), SZ_W); shl_ir(code, 2, opts->gen.scratch1, SZ_D); add_ir(code, 0x60, opts->gen.scratch1, SZ_D); call(code, opts->read_32); call(code, opts->native_addr_and_sync); cycles(&opts->gen, 24); //discard function return address pop_r(code, opts->gen.scratch2); jmp_r(code, opts->gen.scratch1); opts->trap = code->cur; push_r(code, opts->gen.scratch2); //swap USP and SSP if not already in supervisor mode bt_irdisp(code, 5, opts->gen.context_reg, offsetof(m68k_context, status), SZ_B); already_supervisor = code->cur + 1; jcc(code, CC_C, code->cur + 2); swap_ssp_usp(opts); *already_supervisor = code->cur - (already_supervisor+1); //save PC subi_areg(opts, 4, 7); areg_to_native(opts, 7, opts->gen.scratch2); call(code, opts->write_32_lowfirst); //save status register subi_areg(opts, 2, 7); call(code, opts->get_sr); areg_to_native(opts, 7, opts->gen.scratch2); call(code, opts->write_16); //set supervisor bit or_irdisp(code, 0x20, opts->gen.context_reg, offsetof(m68k_context, status), SZ_B); //calculate vector address pop_r(code, opts->gen.scratch1); shl_ir(code, 2, opts->gen.scratch1, SZ_D); call(code, opts->read_32); call(code, opts->native_addr_and_sync); cycles(&opts->gen, 18); jmp_r(code, opts->gen.scratch1); }