view vdp.c @ 217:acd29e2664c6

Added testcases file. Some fixes to test generator for dealing with indexed mode with base and index reg the same. Added support for blastem headless mode in test runner.
author Mike Pavone <pavone@retrodev.com>
date Sat, 20 Apr 2013 00:29:14 -0700
parents 1b4d856b067a
children d3266cee02c9
line wrap: on
line source

#include "vdp.h"
#include "blastem.h"
#include <stdlib.h>
#include <string.h>

#define NTSC_ACTIVE 225
#define PAL_ACTIVE 241
#define BUF_BIT_PRIORITY 0x40
#define MAP_BIT_PRIORITY 0x8000
#define MAP_BIT_H_FLIP 0x800
#define MAP_BIT_V_FLIP 0x1000

#define BIT_PAL        0x8
#define BIT_DMA_ENABLE 0x4
#define BIT_H40        0x1

#define SCROLL_BUFFER_SIZE 32
#define SCROLL_BUFFER_DRAW 16

#define FIFO_SIZE 4

void init_vdp_context(vdp_context * context)
{
	memset(context, 0, sizeof(*context));
	context->vdpmem = malloc(VRAM_SIZE);
	memset(context->vdpmem, 0, VRAM_SIZE);
	context->framebuf = malloc(FRAMEBUF_SIZE);
	memset(context->framebuf, 0, FRAMEBUF_SIZE);
	context->linebuf = malloc(LINEBUF_SIZE + SCROLL_BUFFER_SIZE*2);
	memset(context->linebuf, 0, LINEBUF_SIZE + SCROLL_BUFFER_SIZE*2);
	context->tmp_buf_a = context->linebuf + LINEBUF_SIZE;
	context->tmp_buf_b = context->tmp_buf_a + SCROLL_BUFFER_SIZE;
	context->sprite_draws = MAX_DRAWS;
	context->fifo_cur = malloc(sizeof(fifo_entry) * FIFO_SIZE);
	context->fifo_end = context->fifo_cur + FIFO_SIZE;
}

void render_sprite_cells(vdp_context * context)
{
	if (context->cur_slot >= context->sprite_draws) {
		sprite_draw * d = context->sprite_draw_list + context->cur_slot;
		
		uint16_t dir;
		int16_t x;
		if (d->h_flip) {
			x = d->x_pos + 7;
			dir = -1;
		} else {
			x = d->x_pos;
			dir = 1;
		}
		//printf("Draw Slot %d of %d, Rendering sprite cell from %X to x: %d\n", context->cur_slot, context->sprite_draws, d->address, x);
		context->cur_slot--;
		for (uint16_t address = d->address; address != ((d->address+4) & 0xFFFF); address++) {
			if (x >= 0 && x < 320 && !(context->linebuf[x] & 0xF)) {
				context->linebuf[x] = (context->vdpmem[address] >> 4) | d->pal_priority;
			}
			x += dir;
			if (x >= 0 && x < 320 && !(context->linebuf[x] & 0xF)) {
				context->linebuf[x] = (context->vdpmem[address] & 0xF)  | d->pal_priority;
			}
			x += dir;
		}
	}
}

void scan_sprite_table(uint32_t line, vdp_context * context)
{
	if (context->sprite_index && context->slot_counter) {
		line += 1;
		line &= 0xFF;
		context->sprite_index &= 0x7F;
		if (context->latched_mode & BIT_H40) {
			if (context->sprite_index >= MAX_SPRITES_FRAME) {
				context->sprite_index = 0;
				return;
			}
		} else if(context->sprite_index >= MAX_SPRITES_FRAME_H32) {
			context->sprite_index = 0;
			return;
		}
		//TODO: Read from SAT cache rather than from VRAM
		uint16_t sat_address = (context->regs[REG_SAT] & 0x7F) << 9;
		uint16_t address = context->sprite_index * 8 + sat_address;
		line += 128;
		uint16_t y = ((context->vdpmem[address] & 0x3) << 8 | context->vdpmem[address+1]);
		uint8_t height = ((context->vdpmem[address+2] & 0x3) + 1) * 8;
		//printf("Sprite %d | y: %d, height: %d\n", context->sprite_index, y, height);
		if (y <= line && line < (y + height)) {
			//printf("Sprite %d at y: %d with height %d is on line %d\n", context->sprite_index, y, height, line);
			context->sprite_info_list[--(context->slot_counter)].size = context->vdpmem[address+2];
			context->sprite_info_list[context->slot_counter].index = context->sprite_index;
			context->sprite_info_list[context->slot_counter].y = y-128;
		}
		context->sprite_index = context->vdpmem[address+3] & 0x7F;
		if (context->sprite_index && context->slot_counter)
		{
			address = context->sprite_index * 8 + sat_address;
			y = ((context->vdpmem[address] & 0x3) << 8 | context->vdpmem[address+1]);
			height = ((context->vdpmem[address+2] & 0x3) + 1) * 8;
			if (y <= line && line < (y + height)) {
				//printf("Sprite %d at y: %d with height %d is on line %d\n", context->sprite_index, y, height, line);
				context->sprite_info_list[--(context->slot_counter)].size = context->vdpmem[address+2];
				context->sprite_info_list[context->slot_counter].index = context->sprite_index;
				context->sprite_info_list[context->slot_counter].y = y-128;
			}
			context->sprite_index = context->vdpmem[address+3] & 0x7F;
		}
	}
}

void read_sprite_x(uint32_t line, vdp_context * context)
{
	if (context->cur_slot >= context->slot_counter) {
		if (context->sprite_draws) {
			line += 1;
			line &= 0xFF;
			//in tiles
			uint8_t width = ((context->sprite_info_list[context->cur_slot].size >> 2) & 0x3) + 1;
			//in pixels
			uint8_t height = ((context->sprite_info_list[context->cur_slot].size & 0x3) + 1) * 8;
			uint16_t att_addr = ((context->regs[REG_SAT] & 0x7F) << 9) + context->sprite_info_list[context->cur_slot].index * 8 + 4;
			uint16_t tileinfo = (context->vdpmem[att_addr] << 8) | context->vdpmem[att_addr+1];		
			uint8_t pal_priority = (tileinfo >> 9) & 0x70;
			uint8_t row;
			if (tileinfo & MAP_BIT_V_FLIP) {
				row = (context->sprite_info_list[context->cur_slot].y + height - 1) - line;
			} else {
				row = line-context->sprite_info_list[context->cur_slot].y;
			}
			uint16_t address = ((tileinfo & 0x7FF) << 5) + row * 4;
			int16_t x = ((context->vdpmem[att_addr+ 2] & 0x3) << 8) | context->vdpmem[att_addr + 3];
			if (x) {
				context->flags |= FLAG_CAN_MASK;
			} else if(context->flags & (FLAG_CAN_MASK | FLAG_DOT_OFLOW)) {
				context->flags |= FLAG_MASKED;
			}
			
			context->flags &= ~FLAG_DOT_OFLOW;
			int16_t i;
			if (context->flags & FLAG_MASKED) {
				for (i=0; i < width && context->sprite_draws; i++) {
					--context->sprite_draws;
					context->sprite_draw_list[context->sprite_draws].x_pos = -128;
				}
			} else {
				x -= 128;
				int16_t base_x = x;
				int16_t dir;
				if (tileinfo & MAP_BIT_H_FLIP) {
					x += (width-1) * 8;
					dir = -8;
				} else {
					dir = 8;
				}
				//printf("Sprite %d | x: %d, y: %d, width: %d, height: %d, pal_priority: %X, row: %d, tile addr: %X\n", context->sprite_info_list[context->cur_slot].index, x, context->sprite_info_list[context->cur_slot].y, width, height, pal_priority, row, address);
				for (i=0; i < width && context->sprite_draws; i++, x += dir) {
					--context->sprite_draws;
					context->sprite_draw_list[context->sprite_draws].address = address + i * height * 4;
					context->sprite_draw_list[context->sprite_draws].x_pos = x;
					context->sprite_draw_list[context->sprite_draws].pal_priority = pal_priority;
					context->sprite_draw_list[context->sprite_draws].h_flip = (tileinfo & MAP_BIT_H_FLIP) ? 1 : 0;
				}
			}
			if (i < width) {
				context->flags |= FLAG_DOT_OFLOW;
			}
			context->cur_slot--;
		} else {
			context->flags |= FLAG_DOT_OFLOW;
		}
	}
}

#define VRAM_READ 0
#define VRAM_WRITE 1
#define CRAM_READ 8
#define CRAM_WRITE 3
#define VSRAM_READ 4
#define VSRAM_WRITE 5
#define DMA_START 0x20

void external_slot(vdp_context * context)
{
	//TODO: Figure out what happens if CD bit 4 is not set in DMA copy mode
	//TODO: Figure out what happens when CD:0-3 is not set to a write mode in DMA operations
	//TODO: Figure out what happens if DMA gets disabled part way through a DMA fill or DMA copy
	if(context->flags & FLAG_DMA_RUN) {
		uint16_t dma_len;
		switch(context->regs[REG_DMASRC_H] & 0xC0)
		{
		//68K -> VDP
		case 0:
		case 0x40:
			switch(context->dma_cd & 0xF)
			{
			case VRAM_WRITE:
				if (context->flags & FLAG_DMA_PROG) {
					context->vdpmem[context->address ^ 1] = context->dma_val;
					context->flags &= ~FLAG_DMA_PROG;
				} else {
					context->dma_val = read_dma_value((context->regs[REG_DMASRC_H] << 16) | (context->regs[REG_DMASRC_M] << 8) | context->regs[REG_DMASRC_L]);
					context->vdpmem[context->address] = context->dma_val >> 8;
					context->flags |= FLAG_DMA_PROG;
				}
				break;
			case CRAM_WRITE:
				context->cram[(context->address/2) & (CRAM_SIZE-1)] = read_dma_value((context->regs[REG_DMASRC_H] << 16) | (context->regs[REG_DMASRC_M] << 8) | context->regs[REG_DMASRC_L]);
				//printf("CRAM DMA | %X set to %X from %X at %d\n", (context->address/2) & (CRAM_SIZE-1), context->cram[(context->address/2) & (CRAM_SIZE-1)], (context->regs[REG_DMASRC_H] << 17) | (context->regs[REG_DMASRC_M] << 9) | (context->regs[REG_DMASRC_L] << 1), context->cycles);
				break;
			case VSRAM_WRITE:
				if (((context->address/2) & 63) < VSRAM_SIZE) {
					context->vsram[(context->address/2) & 63] = read_dma_value((context->regs[REG_DMASRC_H] << 16) | (context->regs[REG_DMASRC_M] << 8) | context->regs[REG_DMASRC_L]);
				}
				break;
			}
			break;
		//Fill
		case 0x80:
			switch(context->dma_cd & 0xF)
			{
			case VRAM_WRITE:
				//Charles MacDonald's VDP doc says that the low byte gets written first
				context->vdpmem[context->address] = context->dma_val;
				context->dma_val = (context->dma_val << 8) | ((context->dma_val >> 8) & 0xFF);
				break;
			case CRAM_WRITE:
				context->cram[(context->address/2) & (CRAM_SIZE-1)] = context->dma_val;
				break;
			case VSRAM_WRITE:
				if (((context->address/2) & 63) < VSRAM_SIZE) {
					context->vsram[(context->address/2) & 63] = context->dma_val;
				}
				break;
			}
			break;
		//Copy
		case 0xC0:
			if (context->flags & FLAG_DMA_PROG) {
				switch(context->dma_cd & 0xF)
				{
				case VRAM_WRITE:
					context->vdpmem[context->address] = context->dma_val;
					break;
				case CRAM_WRITE:
					context->cram[(context->address/2) & (CRAM_SIZE-1)] = context->dma_val;
					break;
				case VSRAM_WRITE:
					if (((context->address/2) & 63) < VSRAM_SIZE) {
						context->vsram[(context->address/2) & 63] = context->dma_val;
					}
					break;
				}
				context->flags &= ~FLAG_DMA_PROG;
			} else {
				//I assume, that DMA copy copies from the same RAM as the destination
				//but it's possible I'm mistaken
				switch(context->dma_cd & 0xF)
				{
				case VRAM_WRITE:
					context->dma_val = context->vdpmem[(context->regs[REG_DMASRC_M] << 8) | context->regs[REG_DMASRC_L]];
					break;
				case CRAM_WRITE:
					context->dma_val = context->cram[context->regs[REG_DMASRC_L] & (CRAM_SIZE-1)];
					break;
				case VSRAM_WRITE:
					if ((context->regs[REG_DMASRC_L] & 63) < VSRAM_SIZE) {
						context->dma_val = context->vsram[context->regs[REG_DMASRC_L] & 63];
					} else {
						context->dma_val = 0;
					}
					break;
				}
				context->flags |= FLAG_DMA_PROG;
			}
			break;
		}
		if (!(context->flags & FLAG_DMA_PROG)) {
			context->address += context->regs[REG_AUTOINC];
			context->regs[REG_DMASRC_L] += 1;
			if (!context->regs[REG_DMASRC_L]) {
				context->regs[REG_DMASRC_M] += 1;
			}
			dma_len = ((context->regs[REG_DMALEN_H] << 8) | context->regs[REG_DMALEN_L]) - 1;
			context->regs[REG_DMALEN_H] = dma_len >> 8;
			context->regs[REG_DMALEN_L] = dma_len;
			if (!dma_len) {
				context->flags &= ~FLAG_DMA_RUN;
			}
		}
	} else {
		fifo_entry * start = (context->fifo_end - FIFO_SIZE);
		if (context->fifo_cur != start && start->cycle <= context->cycles) {
			if ((context->regs[REG_MODE_2] & BIT_DMA_ENABLE) && (context->cd & DMA_START)) {
				context->flags |= FLAG_DMA_RUN;
				context->dma_val = start->value;
				context->address = start->address; //undo auto-increment
				context->dma_cd = context->cd;
			} else {
				switch (start->cd & 0xF)
				{
				case VRAM_WRITE:
					if (start->partial) {
						//printf("VRAM Write: %X to %X\n", start->value, context->address ^ 1);
						context->vdpmem[start->address ^ 1] = start->value;
					} else {
						//printf("VRAM Write High: %X to %X\n", start->value >> 8, context->address);
						context->vdpmem[start->address] = start->value >> 8;
						start->partial = 1;
						//skip auto-increment and removal of entry from fifo
						return;
					}
					break;
				case CRAM_WRITE:
					//printf("CRAM Write | %X to %X\n", start->value, (start->address/2) & (CRAM_SIZE-1));
					context->cram[(start->address/2) & (CRAM_SIZE-1)] = start->value;
					break;
				case VSRAM_WRITE:
					if (((start->address/2) & 63) < VSRAM_SIZE) {
						//printf("VSRAM Write: %X to %X\n", start->value, context->address);
						context->vsram[(start->address/2) & 63] = start->value;
					}
					break;
				}
				//context->address += context->regs[REG_AUTOINC];
			}
			fifo_entry * cur = start+1;
			if (cur < context->fifo_cur) {
				memmove(start, cur, sizeof(fifo_entry) * (context->fifo_cur - cur));
			}
			context->fifo_cur -= 1;
		} else {
			context->flags |= FLAG_UNUSED_SLOT;
		}
	}
}

#define WINDOW_RIGHT 0x80
#define WINDOW_DOWN  0x80

void read_map_scroll(uint16_t column, uint16_t vsram_off, uint32_t line, uint16_t address, uint16_t hscroll_val, vdp_context * context)
{
	if (!vsram_off) {
		uint16_t left_col, right_col;
		if (context->regs[REG_WINDOW_H] & WINDOW_RIGHT) {
			left_col = (context->regs[REG_WINDOW_H] & 0x1F) * 2;
			right_col = 42;
		} else {
			left_col = 0;
			right_col = (context->regs[REG_WINDOW_H] & 0x1F) * 2;
			if (right_col) {
				right_col += 2;
			}
		}
		uint16_t top_line, bottom_line;
		if (context->regs[REG_WINDOW_V] & WINDOW_DOWN) {
			top_line = (context->regs[REG_WINDOW_V] & 0x1F) * 8;
			bottom_line = 241;
		} else {
			top_line = 0;
			bottom_line = (context->regs[REG_WINDOW_V] & 0x1F) * 8;
		}
		if ((column >= left_col && column < right_col) || (line >= top_line && line < bottom_line)) {
			uint16_t address = context->regs[REG_WINDOW] << 10;
			uint16_t line_offset, offset, mask;
			if (context->latched_mode & BIT_H40) {
				address &= 0xF000;
				line_offset = (((line) / 8) * 64 * 2) & 0xFFF;
				mask = 0x7F;
				
			} else {
				address &= 0xF800;
				line_offset = (((line) / 8) * 32 * 2) & 0xFFF;
				mask = 0x3F;
			}
			offset = address + line_offset + (((column - 2) * 2) & mask);
			context->col_1 = (context->vdpmem[offset] << 8) | context->vdpmem[offset+1];
			//printf("Window | top: %d, bot: %d, left: %d, right: %d, base: %X, line: %X offset: %X, tile: %X, reg: %X\n", top_line, bottom_line, left_col, right_col, address, line_offset, offset, ((context->col_1 & 0x3FF) << 5), context->regs[REG_WINDOW]);
			offset = address + line_offset + (((column - 1) * 2) & mask);
			context->col_2 = (context->vdpmem[offset] << 8) | context->vdpmem[offset+1];
			context->v_offset = (line) & 0x7;
			context->flags |= FLAG_WINDOW;
			return;
		}
		context->flags &= ~FLAG_WINDOW;
	}
	uint16_t vscroll;
	switch(context->regs[REG_SCROLL] & 0x30)
	{
	case 0:
		vscroll = 0xFF;
		break;
	case 0x10:
		vscroll = 0x1FF;
		break;
	case 0x20:
		//TODO: Verify this behavior
		vscroll = 0;
		break;
	case 0x30:
		vscroll = 0x3FF;
		break;
	}
	vscroll &= (context->vsram[(context->regs[REG_MODE_3] & 0x4 ? column : 0) + vsram_off] + line);
	context->v_offset = vscroll & 0x7;
	//printf("%s | line %d, vsram: %d, vscroll: %d, v_offset: %d\n",(vsram_off ? "B" : "A"), line, context->vsram[context->regs[REG_MODE_3] & 0x4 ? column : 0], vscroll, context->v_offset);
	vscroll /= 8;
	uint16_t hscroll_mask;
	uint16_t v_mul;
	switch(context->regs[REG_SCROLL] & 0x3)
	{
	case 0:
		hscroll_mask = 0x1F;
		v_mul = 64;
		break;
	case 0x1:
		hscroll_mask = 0x3F;
		v_mul = 128;
		break;
	case 0x2:
		//TODO: Verify this behavior
		hscroll_mask = 0;
		v_mul = 0;
		break;
	case 0x3:
		hscroll_mask = 0x7F;
		v_mul = 256;
		break;
	}
	uint16_t hscroll, offset;
	for (int i = 0; i < 2; i++) {
		hscroll = (column - 2 + i - ((hscroll_val/8) & 0xFFFE)) & hscroll_mask;
		offset = address + ((vscroll * v_mul + hscroll*2) & 0x1FFF);
		//printf("%s | line: %d, col: %d, x: %d, hs_mask %X, scr reg: %X, tbl addr: %X\n", (vsram_off ? "B" : "A"), line, (column-2+i), hscroll, hscroll_mask, context->regs[REG_SCROLL], offset);
		uint16_t col_val = (context->vdpmem[offset] << 8) | context->vdpmem[offset+1];
		if (i) {
			context->col_2 = col_val;
		} else {
			context->col_1 = col_val;
		}
	}
}

void read_map_scroll_a(uint16_t column, uint32_t line, vdp_context * context)
{
	read_map_scroll(column, 0, line, (context->regs[REG_SCROLL_A] & 0x38) << 10, context->hscroll_a, context);
}

void read_map_scroll_b(uint16_t column, uint32_t line, vdp_context * context)
{
	read_map_scroll(column, 1, line, (context->regs[REG_SCROLL_B] & 0x7) << 13, context->hscroll_b, context);
}

void render_map(uint16_t col, uint8_t * tmp_buf, vdp_context * context)
{
	uint16_t address = ((col & 0x7FF) << 5);
	if (col & MAP_BIT_V_FLIP) {
		address +=  28 - 4 * context->v_offset;
	} else {
		address += 4 * context->v_offset;
	}
	uint16_t pal_priority = (col >> 9) & 0x70;
	int32_t dir;
	if (col & MAP_BIT_H_FLIP) {
		tmp_buf += 7;
		dir = -1;
	} else {
		dir = 1;
	}
	for (uint32_t i=0; i < 4; i++, address++)
	{
		*tmp_buf = pal_priority | (context->vdpmem[address] >> 4);
		tmp_buf += dir;
		*tmp_buf = pal_priority | (context->vdpmem[address] & 0xF);
		tmp_buf += dir;
	}
}

void render_map_1(vdp_context * context)
{
	render_map(context->col_1, context->tmp_buf_a+SCROLL_BUFFER_DRAW, context);
}

void render_map_2(vdp_context * context)
{
	render_map(context->col_2, context->tmp_buf_a+SCROLL_BUFFER_DRAW+8, context);
}

void render_map_3(vdp_context * context)
{
	render_map(context->col_1, context->tmp_buf_b+SCROLL_BUFFER_DRAW, context);
}

void render_map_output(uint32_t line, int32_t col, vdp_context * context)
{
	if (line >= 240) {
		return;
	}
	render_map(context->col_2, context->tmp_buf_b+SCROLL_BUFFER_DRAW+8, context);
	uint16_t *dst, *end;
	uint8_t *sprite_buf, *plane_a, *plane_b;
	if (col)
	{
		col-=2;
		dst = context->framebuf + line * 320 + col * 8;
		sprite_buf = context->linebuf + col * 8;
		uint16_t a_src;
		if (context->flags & FLAG_WINDOW) {
			plane_a = context->tmp_buf_a + SCROLL_BUFFER_DRAW;
			a_src = FBUF_SRC_W;
		} else {
			plane_a = context->tmp_buf_a + SCROLL_BUFFER_DRAW - (context->hscroll_a & 0xF);
			a_src = FBUF_SRC_A;
		}
		plane_b = context->tmp_buf_b + SCROLL_BUFFER_DRAW - (context->hscroll_b & 0xF);
		end = dst + 16;
		uint16_t src;
		//printf("A | tmp_buf offset: %d\n", 8 - (context->hscroll_a & 0x7));
		for (; dst < end; ++plane_a, ++plane_b, ++sprite_buf, ++dst) {
			uint8_t pixel;
			if (*sprite_buf & BUF_BIT_PRIORITY && *sprite_buf & 0xF) {
				pixel = *sprite_buf;
				src = FBUF_SRC_S;
			} else if (*plane_a & BUF_BIT_PRIORITY && *plane_a & 0xF) {
				pixel = *plane_a;
				src = a_src;
			} else if (*plane_b & BUF_BIT_PRIORITY && *plane_b & 0xF) {
				pixel = *plane_b;
				src = FBUF_SRC_B;
			} else if (*sprite_buf & 0xF) {
				pixel = *sprite_buf;
				src = FBUF_SRC_S;
			} else if (*plane_a & 0xF) {
				pixel = *plane_a;
				src = a_src;
			} else if (*plane_b & 0xF){
				pixel = *plane_b;
				src = FBUF_SRC_B;
			} else {
				pixel = context->regs[REG_BG_COLOR] & 0x3F;
				src = FBUF_SRC_BG;
			}
			*dst = context->cram[pixel & 0x3F] | ((pixel & BUF_BIT_PRIORITY) ? FBUF_BIT_PRIORITY : 0) | src;
		}
	} else {
		//dst = context->framebuf + line * 320;
		//sprite_buf = context->linebuf + col * 8;
		//plane_a = context->tmp_buf_a + 16 - (context->hscroll_a & 0x7);
		//plane_b = context->tmp_buf_b + 16 - (context->hscroll_b & 0x7);
		//end = dst + 8;
	}
	
	uint16_t remaining;
	if (!(context->flags & FLAG_WINDOW)) {
		remaining = context->hscroll_a & 0xF;
		memcpy(context->tmp_buf_a + SCROLL_BUFFER_DRAW - remaining, context->tmp_buf_a + SCROLL_BUFFER_SIZE - remaining, remaining);
	}
	remaining = context->hscroll_b & 0xF;
	memcpy(context->tmp_buf_b + SCROLL_BUFFER_DRAW - remaining, context->tmp_buf_b + SCROLL_BUFFER_SIZE - remaining, remaining);
}

#define COLUMN_RENDER_BLOCK(column, startcyc) \
	case startcyc:\
		read_map_scroll_a(column, line, context);\
		break;\
	case (startcyc+1):\
		external_slot(context);\
		break;\
	case (startcyc+2):\
		render_map_1(context);\
		break;\
	case (startcyc+3):\
		render_map_2(context);\
		break;\
	case (startcyc+4):\
		read_map_scroll_b(column, line, context);\
		break;\
	case (startcyc+5):\
		read_sprite_x(line, context);\
		break;\
	case (startcyc+6):\
		render_map_3(context);\
		break;\
	case (startcyc+7):\
		render_map_output(line, column, context);\
		break;

#define COLUMN_RENDER_BLOCK_REFRESH(column, startcyc) \
	case startcyc:\
		read_map_scroll_a(column, line, context);\
		break;\
	case (startcyc+1):\
		break;\
	case (startcyc+2):\
		render_map_1(context);\
		break;\
	case (startcyc+3):\
		render_map_2(context);\
		break;\
	case (startcyc+4):\
		read_map_scroll_b(column, line, context);\
		break;\
	case (startcyc+5):\
		read_sprite_x(line, context);\
		break;\
	case (startcyc+6):\
		render_map_3(context);\
		break;\
	case (startcyc+7):\
		render_map_output(line, column, context);\
		break;

void vdp_h40(uint32_t line, uint32_t linecyc, vdp_context * context)
{
	uint16_t address;
	uint32_t mask;
	switch(linecyc)
	{
	//sprite render to line buffer starts
	case 0:
		context->cur_slot = MAX_DRAWS-1;
		memset(context->linebuf, 0, LINEBUF_SIZE);
		render_sprite_cells(context);
		break;
	case 1:
	case 2:
	case 3:
		render_sprite_cells(context);
		break;
	//sprite attribute table scan starts
	case 4:
		render_sprite_cells( context);
		context->sprite_index = 0x80;
		context->slot_counter = MAX_SPRITES_LINE;
		scan_sprite_table(line, context);
		break;
	case 5:
	case 6:
	case 7:
	case 8:
	case 9:
	case 10:
	case 11:
	case 12:
	case 13:
	case 14:
	case 15:
	case 16:
	case 17:
	case 18:
	case 19:
	case 20:
	//!HSYNC asserted
	case 21:
	case 22:
		render_sprite_cells(context);
		scan_sprite_table(line, context);
		break;
	case 23:
		external_slot(context);
		break;
	case 24:
	case 25:
	case 26:
	case 27:
	case 28:
	case 29:
	case 30:
	case 31:
	case 32:
	case 33:
	case 34:
		render_sprite_cells(context);
		scan_sprite_table(line, context);
		break;
	case 35:
		address = (context->regs[REG_HSCROLL] & 0x3F) << 10;
		mask = 0;
		if (context->regs[REG_MODE_3] & 0x2) {
			mask |= 0xF8;
		}
		if (context->regs[REG_MODE_3] & 0x1) {
			mask |= 0x7;
		}
		line &= mask;
		address += line * 4;
		context->hscroll_a = context->vdpmem[address] << 8 | context->vdpmem[address+1];
		context->hscroll_b = context->vdpmem[address+2] << 8 | context->vdpmem[address+3];
		//printf("%d: HScroll A: %d, HScroll B: %d\n", line, context->hscroll_a, context->hscroll_b);
		break;
	case 36:
	//!HSYNC high
	case 37:
	case 38:
	case 39:
		render_sprite_cells(context);
		scan_sprite_table(line, context);
		break;
	case 40:
		read_map_scroll_a(0, line, context);
		break;
	case 41:
		render_sprite_cells(context);
		scan_sprite_table(line, context);
		break;
	case 42:
		render_map_1(context);
		scan_sprite_table(line, context);//Just a guess
		break;
	case 43:
		render_map_2(context);
		scan_sprite_table(line, context);//Just a guess
		break;
	case 44:
		read_map_scroll_b(0, line, context);
		break;
	case 45:
		render_sprite_cells(context);
		scan_sprite_table(line, context);
		break;
	case 46:
		render_map_3(context);
		scan_sprite_table(line, context);//Just a guess
		break;
	case 47:
		render_map_output(line, 0, context);
		scan_sprite_table(line, context);//Just a guess
		//reverse context slot counter so it counts the number of sprite slots
		//filled rather than the number of available slots
		//context->slot_counter = MAX_SPRITES_LINE - context->slot_counter;
		context->cur_slot = MAX_SPRITES_LINE-1;
		context->sprite_draws = MAX_DRAWS;
		context->flags &= (~FLAG_CAN_MASK & ~FLAG_MASKED);
		break;
	COLUMN_RENDER_BLOCK(2, 48)
	COLUMN_RENDER_BLOCK(4, 56)
	COLUMN_RENDER_BLOCK(6, 64)
	COLUMN_RENDER_BLOCK_REFRESH(8, 72)
	COLUMN_RENDER_BLOCK(10, 80)
	COLUMN_RENDER_BLOCK(12, 88)
	COLUMN_RENDER_BLOCK(14, 96)
	COLUMN_RENDER_BLOCK_REFRESH(16, 104)
	COLUMN_RENDER_BLOCK(18, 112)
	COLUMN_RENDER_BLOCK(20, 120)
	COLUMN_RENDER_BLOCK(22, 128)
	COLUMN_RENDER_BLOCK_REFRESH(24, 136)
	COLUMN_RENDER_BLOCK(26, 144)
	COLUMN_RENDER_BLOCK(28, 152)
	COLUMN_RENDER_BLOCK(30, 160)
	COLUMN_RENDER_BLOCK_REFRESH(32, 168)
	COLUMN_RENDER_BLOCK(34, 176)
	COLUMN_RENDER_BLOCK(36, 184)
	COLUMN_RENDER_BLOCK(38, 192)
	COLUMN_RENDER_BLOCK_REFRESH(40, 200)
	case 208:
	case 209:
		external_slot(context);
		break;
	default:
		//leftovers from HSYNC clock change nonsense
		break;
	}
}

void vdp_h32(uint32_t line, uint32_t linecyc, vdp_context * context)
{
	uint16_t address;
	uint32_t mask;
	switch(linecyc)
	{
	//sprite render to line buffer starts
	case 0:
		context->cur_slot = MAX_DRAWS_H32-1;
		memset(context->linebuf, 0, LINEBUF_SIZE);
		render_sprite_cells(context);
		break;
	case 1:
	case 2:
	case 3:
		render_sprite_cells(context);
		break;
	//sprite attribute table scan starts
	case 4:
		render_sprite_cells( context);
		context->sprite_index = 0x80;
		context->slot_counter = MAX_SPRITES_LINE_H32;
		scan_sprite_table(line, context);
		break;
	case 5:
	case 6:
	case 7:
	case 8:
	case 9:
	case 10:
	case 11:
	case 12:
	case 13:
		render_sprite_cells(context);
		scan_sprite_table(line, context);
	case 14:
		external_slot(context);
		break;
	case 15:
	case 16:
	case 17:
	case 18:
	case 19:
	//HSYNC start
	case 20:
	case 21:
	case 22:
	case 23:
	case 24:
	case 25:
	case 26:
		render_sprite_cells(context);
		scan_sprite_table(line, context);
		break;
	case 27:
		external_slot(context);
		break;
	case 28:
		address = (context->regs[REG_HSCROLL] & 0x3F) << 10;
		mask = 0;
		if (context->regs[REG_MODE_3] & 0x2) {
			mask |= 0xF8;
		}
		if (context->regs[REG_MODE_3] & 0x1) {
			mask |= 0x7;
		}
		line &= mask;
		address += line * 4;
		context->hscroll_a = context->vdpmem[address] << 8 | context->vdpmem[address+1];
		context->hscroll_b = context->vdpmem[address+2] << 8 | context->vdpmem[address+3];
		//printf("%d: HScroll A: %d, HScroll B: %d\n", line, context->hscroll_a, context->hscroll_b);
		break;
	case 29:
	case 30:
	case 31:
	case 32:
		render_sprite_cells(context);
		scan_sprite_table(line, context);
		break;
	//!HSYNC high
	case 33:
		read_map_scroll_a(0, line, context);
		break;
	case 34:
		render_sprite_cells(context);
		scan_sprite_table(line, context);
		break;
	case 35:
		render_map_1(context);
		scan_sprite_table(line, context);//Just a guess
		break;
	case 36:
		render_map_2(context);
		scan_sprite_table(line, context);//Just a guess
		break;
	case 37:
		read_map_scroll_b(0, line, context);
		break;
	case 38:
		render_sprite_cells(context);
		scan_sprite_table(line, context);
		break;
	case 39:
		render_map_3(context);
		scan_sprite_table(line, context);//Just a guess
		break;
	case 40:
		render_map_output(line, 0, context);
		scan_sprite_table(line, context);//Just a guess
		//reverse context slot counter so it counts the number of sprite slots
		//filled rather than the number of available slots
		//context->slot_counter = MAX_SPRITES_LINE - context->slot_counter;
		context->cur_slot = MAX_SPRITES_LINE_H32-1;
		context->sprite_draws = MAX_DRAWS_H32;
		context->flags &= (~FLAG_CAN_MASK & ~FLAG_MASKED);
		break;
	COLUMN_RENDER_BLOCK(2, 41)
	COLUMN_RENDER_BLOCK(4, 49)
	COLUMN_RENDER_BLOCK(6, 57)
	COLUMN_RENDER_BLOCK_REFRESH(8, 65)
	COLUMN_RENDER_BLOCK(10, 73)
	COLUMN_RENDER_BLOCK(12, 81)
	COLUMN_RENDER_BLOCK(14, 89)
	COLUMN_RENDER_BLOCK_REFRESH(16, 97)
	COLUMN_RENDER_BLOCK(18, 105)
	COLUMN_RENDER_BLOCK(20, 113)
	COLUMN_RENDER_BLOCK(22, 121)
	COLUMN_RENDER_BLOCK_REFRESH(24, 129)
	COLUMN_RENDER_BLOCK(26, 137)
	COLUMN_RENDER_BLOCK(28, 145)
	COLUMN_RENDER_BLOCK(30, 153)
	COLUMN_RENDER_BLOCK_REFRESH(32, 161)
	case 169:
	case 170:
		external_slot(context);
		break;
	}
}
void latch_mode(vdp_context * context)
{
	context->latched_mode = (context->regs[REG_MODE_4] & 0x81) | (context->regs[REG_MODE_2] & BIT_PAL);
}

int is_refresh(vdp_context * context)
{
	uint32_t linecyc = context->cycles % MCLKS_LINE;
	if (context->latched_mode & BIT_H40) {
		linecyc = linecyc/16;
		//TODO: Figure out the exact behavior that reduces DMA slots for direct color DMA demos
		return (linecyc == 37 || linecyc == 69 || linecyc == 102 || linecyc == 133 || linecyc == 165 || linecyc == 197 || linecyc >= 210 || (linecyc < 6 && (context->flags & FLAG_DMA_RUN) && ((context->dma_cd & 0xF) == CRAM_WRITE)));
	} else {
		linecyc = linecyc/20;
		//TODO: Figure out which slots are refresh when display is off in 32-cell mode
		//These numbers are guesses based on H40 numbers
		return (linecyc == 24 || linecyc == 56 || linecyc == 88 || linecyc == 120 || linecyc == 152 || (linecyc < 5 && (context->flags & FLAG_DMA_RUN) && ((context->dma_cd & 0xF) == CRAM_WRITE)));
		//The numbers below are the refresh slots during active display
		//return (linecyc == 66 || linecyc == 98 || linecyc == 130 || linecyc == 162);
	}
}

void check_render_bg(vdp_context * context, int32_t line)
{
	if (line > 0) {
		line -= 1;
		uint16_t * start = NULL, *end = NULL;
		uint32_t linecyc = (context->cycles % MCLKS_LINE);
		if (context->latched_mode & BIT_H40) {
			linecyc /= 16;
			if (linecyc >= 50 && linecyc < 210) {
				uint32_t x = (linecyc-50)*2;
				start = context->framebuf + line * 320 + x;
				end = start + 2;
			}
		} else {
			linecyc /= 20;
			if (linecyc >= 43 && linecyc < 171) {
				uint32_t x = (linecyc-43)*2;
				start = context->framebuf + line * 320 + x;
				end = start + 2;
			}
		}
		uint16_t color = context->cram[context->regs[REG_BG_COLOR] & 0x3F];
		while (start != end) {
			*start = color;
			++start;
		}
	}
}

void vdp_run_context(vdp_context * context, uint32_t target_cycles)
{
	while(context->cycles < target_cycles)
	{
		uint32_t line = context->cycles / MCLKS_LINE;
		uint32_t active_lines = context->latched_mode & BIT_PAL ? PAL_ACTIVE : NTSC_ACTIVE;
		if (!line) {
			latch_mode(context);
		}
		if (line < active_lines && context->regs[REG_MODE_2] & DISPLAY_ENABLE) {
			//first sort-of active line is treated as 255 internally
			//it's used for gathering sprite info for line 
			line = (line - 1) & 0xFF;
			uint32_t linecyc = context->cycles % MCLKS_LINE;
			
			//Convert to slot number
			if (context->latched_mode & BIT_H40){
				//TODO: Deal with nasty clock switching during HBLANK
				linecyc = linecyc/16;
				vdp_h40(line, linecyc, context);
				context->cycles += 16;
			} else {
				linecyc = linecyc/20;
				vdp_h32(line, linecyc, context);
				context->cycles += 20;
			}
		} else {
			if (!is_refresh(context)) {
				external_slot(context);
			}
			if (line < active_lines) {
				check_render_bg(context, line);
			}
			if (context->latched_mode & BIT_H40){
				//TODO: Deal with nasty clock switching during HBLANK
				context->cycles += 16;
			} else {
				context->cycles += 20;
			}
		}
	}
}

uint32_t vdp_run_to_vblank(vdp_context * context)
{
	uint32_t target_cycles = ((context->latched_mode & BIT_PAL) ? PAL_ACTIVE : NTSC_ACTIVE) * MCLKS_LINE;
	vdp_run_context(context, target_cycles);
	return context->cycles;
}

void vdp_run_dma_done(vdp_context * context, uint32_t target_cycles)
{
	for(;;) {
		uint32_t dmalen = (context->regs[REG_DMALEN_H] << 8) | context->regs[REG_DMALEN_L];
		if (!dmalen) {
			dmalen = 0x10000;
		}
		uint32_t min_dma_complete = dmalen * (context->latched_mode & BIT_H40 ? 16 : 20);
		if ((context->regs[REG_DMASRC_H] & 0xC0) == 0xC0 || (context->cd & 0xF) == VRAM_WRITE) {
			//DMA copies take twice as long to complete since they require a read and a write
			//DMA Fills and transfers to VRAM also take twice as long as it requires 2 writes for a single word
			min_dma_complete *= 2;
		}
		min_dma_complete += context->cycles;
		if (target_cycles < min_dma_complete) {
			vdp_run_context(context, target_cycles);
			return;
		} else {
			vdp_run_context(context, min_dma_complete);
			if (!(context->flags & FLAG_DMA_RUN)) {
				return;
			}
		}
	}
}

int vdp_control_port_write(vdp_context * context, uint16_t value)
{
	//printf("control port write: %X\n", value);
	if (context->flags & FLAG_DMA_RUN) {
		return -1;
	}
	if (context->flags & FLAG_PENDING) {
		context->address = (context->address & 0x3FFF) | (value << 14);
		context->cd = (context->cd & 0x3) | ((value >> 2) & 0x3C);
		context->flags &= ~FLAG_PENDING;
		//printf("New Address: %X, New CD: %X\n", context->address, context->cd);
		if (context->cd & 0x20) {
			if((context->regs[REG_DMASRC_H] & 0xC0) != 0x80) {
				//DMA copy or 68K -> VDP, transfer starts immediately
				context->flags |= FLAG_DMA_RUN;
				context->dma_cd = context->cd;
				if (!(context->regs[REG_DMASRC_H] & 0x80)) {
					return 1;
				}
			}
		}
	} else {
		if ((value & 0xC000) == 0x8000) {
			//Register write
			uint8_t reg = (value >> 8) & 0x1F;
			if (reg < VDP_REGS) {
				//printf("register %d set to %X\n", reg, value & 0xFF);
				context->regs[reg] = value;
				if (reg == REG_MODE_2) {
					//printf("Display is now %s\n", (context->regs[REG_MODE_2] & DISPLAY_ENABLE) ? "enabled" : "disabled");
				}
			}
		} else {
			context->flags |= FLAG_PENDING;
			context->address = (context->address &0xC000) | (value & 0x3FFF);
			context->cd = (context->cd &0x3C) | (value >> 14);
		}
	}
	return 0;
}

int vdp_data_port_write(vdp_context * context, uint16_t value)
{
	//printf("data port write: %X\n", value);
	if (context->flags & FLAG_DMA_RUN) {
		return -1;
	}
	if (!(context->cd & 1)) {
		//ignore writes when cd is configured for read
		return 0;
	}
	context->flags &= ~FLAG_PENDING;
	/*if (context->fifo_cur == context->fifo_end) {
		printf("FIFO full, waiting for space before next write at cycle %X\n", context->cycles);
	}*/
	while (context->fifo_cur == context->fifo_end) {
		vdp_run_context(context, context->cycles + ((context->latched_mode & BIT_H40) ? 16 : 20));
	}
	context->fifo_cur->cycle = context->cycles;
	context->fifo_cur->address = context->address;
	context->fifo_cur->value = value;
	context->fifo_cur->cd = context->cd;
	context->fifo_cur->partial = 0;
	context->fifo_cur++;
	context->address += context->regs[REG_AUTOINC];
	return 0;
}

uint16_t vdp_control_port_read(vdp_context * context)
{
	context->flags &= ~FLAG_PENDING;
	uint16_t value = 0x3400;
	if (context->fifo_cur == (context->fifo_end - FIFO_SIZE)) {
		value |= 0x200;
	}
	if (context->fifo_cur == context->fifo_end) {
		value |= 0x100;
	}
	if (context->flags & FLAG_DMA_RUN) {
		value |= 0x2;
	}
	uint32_t line= context->cycles / MCLKS_LINE;
	if (line >= (context->latched_mode & BIT_PAL ? PAL_ACTIVE : NTSC_ACTIVE)) {
		value |= 0x8;
	}
	//TODO: Lots of other bits in status port
	return value;
}

uint16_t vdp_data_port_read(vdp_context * context)
{
	context->flags &= ~FLAG_PENDING;
	if (context->cd & 1) {
		return 0;
	}
	//Not sure if the FIFO should be drained before processing a read or not, but it would make sense
	context->flags &= ~FLAG_UNUSED_SLOT;
	while (!(context->flags & FLAG_UNUSED_SLOT)) {
		vdp_run_context(context, context->cycles + ((context->latched_mode & BIT_H40) ? 16 : 20));
	}
	uint16_t value = 0;
	switch (context->cd & 0xF)
	{
	case VRAM_READ:
		value = context->vdpmem[context->address] << 8;
		context->flags &= ~FLAG_UNUSED_SLOT;
		while (!(context->flags & FLAG_UNUSED_SLOT)) {
			vdp_run_context(context, context->cycles + ((context->latched_mode & BIT_H40) ? 16 : 20));
		}
		value |= context->vdpmem[context->address ^ 1];
		break;
	case CRAM_READ:
		value = context->cram[(context->address/2) & (CRAM_SIZE-1)];
		break;
	case VSRAM_READ:
		if (((context->address / 2) & 63) < VSRAM_SIZE) {
			value = context->vsram[context->address & 63];
		}
		break;
	}
	context->address += context->regs[REG_AUTOINC];
	return value;
}

uint16_t vdp_hv_counter_read(vdp_context * context)
{
	uint32_t line= context->cycles / MCLKS_LINE;
	if (!line) {
		line = 0xFF;
	} else {
		line--;
		if (line > 0xEA) {
			line = (line + 0xFA) & 0xFF;
		}
	}
	uint32_t linecyc = context->cycles % MCLKS_LINE;
	if (context->latched_mode & BIT_H40) {
		linecyc /= 8;
		if (linecyc >= 86) {
			linecyc -= 86;
		} else {
			linecyc += 334;
		}
		if (linecyc > 0x16C) {
			linecyc += 92;
		}
	} else {
		linecyc /= 10;
		if (linecyc >= 74) {
			linecyc -= 74;
		} else {
			linecyc += 268;
		}
		if (linecyc > 0x127) {
			linecyc += 170;
		}
	}
	linecyc &= 0xFF;
	return (line << 8) | linecyc;
}

void vdp_adjust_cycles(vdp_context * context, uint32_t deduction)
{
	context->cycles -= deduction;
	for(fifo_entry * start = (context->fifo_end - FIFO_SIZE); start < context->fifo_cur; start++) {
		if (start->cycle >= deduction) {
			start->cycle -= deduction;
		} else {
			start->cycle = 0;
		}
	}
}

#define GST_VDP_REGS 0xFA
#define GST_VDP_MEM 0x12478

void vdp_load_savestate(vdp_context * context, FILE * state_file)
{
	uint8_t tmp_buf[CRAM_SIZE*2];
	fseek(state_file, GST_VDP_REGS, SEEK_SET);
	fread(context->regs, 1, VDP_REGS, state_file);
	latch_mode(context);
	fread(tmp_buf, 1, sizeof(tmp_buf), state_file);
	for (int i = 0; i < CRAM_SIZE; i++) {
		context->cram[i] = (tmp_buf[i*2+1] << 8) | tmp_buf[i*2];
	}
	fread(tmp_buf, 2, VSRAM_SIZE, state_file);
	for (int i = 0; i < VSRAM_SIZE; i++) {
		context->vsram[i] = (tmp_buf[i*2+1] << 8) | tmp_buf[i*2];
	}
	fseek(state_file, GST_VDP_MEM, SEEK_SET);
	fread(context->vdpmem, 1, VRAM_SIZE, state_file);
}

void vdp_save_state(vdp_context * context, FILE * outfile)
{
	uint8_t tmp_buf[CRAM_SIZE*2];
	fseek(outfile, GST_VDP_REGS, SEEK_SET);
	fwrite(context->regs, 1, VDP_REGS, outfile);
	for (int i = 0; i < CRAM_SIZE; i++) {
		tmp_buf[i*2] = context->cram[i];
		tmp_buf[i*2+1] = context->cram[i] >> 8;
	}
	fwrite(tmp_buf, 1, sizeof(tmp_buf), outfile);
	for (int i = 0; i < VSRAM_SIZE; i++) {
		tmp_buf[i*2] = context->vsram[i];
		tmp_buf[i*2+1] = context->vsram[i] >> 8;
	}
	fwrite(tmp_buf, 2, VSRAM_SIZE, outfile);
	fseek(outfile, GST_VDP_MEM, SEEK_SET);
	fwrite(context->vdpmem, 1, VRAM_SIZE, outfile);
}