view tern.c @ 1374:8f404b1fa572

Go back to resetting the refresh counter after a DMA. Probably not quite correct as it is probably reset on VDP triggered refresh, but this is close enough for now given the general limitations with my refresh code. VDP FIFO Testing seems to be passing 100% reliably again (was occassionally failing still with the last commit)
author Michael Pavone <pavone@retrodev.com>
date Tue, 23 May 2017 23:47:40 -0700
parents 071e761bcdcf
children e890971f3757
line wrap: on
line source

/*
 Copyright 2013 Michael Pavone
 This file is part of BlastEm.
 BlastEm is free software distributed under the terms of the GNU General Public License version 3 or greater. See COPYING for full license text.
*/
#include "tern.h"
#include <stddef.h>
#include <stdlib.h>
#include <string.h>
#include <stdio.h>
#include "util.h"

tern_node * tern_insert(tern_node * head, char const * key, tern_val value, uint8_t valtype)
{
	tern_node ** cur = &head;
	while(*key)
	{
		if (*cur) {
			while(*cur && (*cur)->el != *key)
			{
				if (*key < (*cur)->el) {
					cur = &(*cur)->left;
				} else {
					cur = &(*cur)->right;
				}
			}
		}
		if (!*cur) {
			*cur = malloc(sizeof(tern_node));
			(*cur)->left = NULL;
			(*cur)->right = NULL;
			(*cur)->straight.next = NULL;
			(*cur)->el = *key;
			(*cur)->valtype = TVAL_NONE;
		}
		cur = &((*cur)->straight.next);
		key++;
	}
	while(*cur && (*cur)->el)
	{
		cur = &(*cur)->left;
	}
	if (!*cur) {
		*cur = malloc(sizeof(tern_node));
		(*cur)->left = NULL;
		(*cur)->right = NULL;
		(*cur)->el = 0;
	}
	(*cur)->straight.value = value;
	(*cur)->valtype = valtype;
	return head;
}

uint8_t tern_find(tern_node * head, char const * key, tern_val *ret)
{
	tern_node * cur = head;
	while (cur)
	{
		if (cur->el == *key) {
			if (*key) {
				cur = cur->straight.next;
				key++;
			} else {
				*ret = cur->straight.value;
				return cur->valtype;
			}
		} else if (*key < cur->el) {
			cur = cur->left;
		} else {
			cur = cur->right;
		}
	}
	return TVAL_NONE;
}

tern_node * tern_find_prefix(tern_node * head, char const * key)
{
	tern_node * cur = head;
	while (cur && *key)
	{
		if (cur->el == *key) {
			cur = cur->straight.next;
			key++;
		} else if (*key < cur->el) {
			cur = cur->left;
		} else {
			cur = cur->right;
		}
	}
	return cur;
}

intptr_t tern_find_int(tern_node * head, char const * key, intptr_t def)
{
	tern_val ret;
	uint8_t valtype = tern_find(head, key, &ret);
	if (valtype == TVAL_INT) {
		return ret.intval;
	}
	return def;
}

tern_node * tern_insert_int(tern_node * head, char const * key, intptr_t value)
{
	tern_val val;
	val.intval = value;
	return tern_insert(head, key, val, TVAL_INT);
}

void * tern_find_ptr_default(tern_node * head, char const * key, void * def)
{
	tern_val ret;
	uint8_t valtype = tern_find(head, key, &ret);
	if (valtype == TVAL_PTR) {
		return ret.ptrval;
	}
	return def;
}

void * tern_find_ptr(tern_node * head, char const * key)
{
	return tern_find_ptr_default(head, key, NULL);
}

tern_node *tern_find_node(tern_node *head, char const *key)
{
	tern_val ret;
	uint8_t valtype = tern_find(head, key, &ret);
	if (valtype == TVAL_NODE) {
		return ret.ptrval;
	}
	return NULL;
}

tern_val tern_find_path_default(tern_node *head, char const *key, tern_val def, uint8_t req_valtype)
{
	tern_val ret;
	while (*key)
	{
		uint8_t valtype = tern_find(head, key, &ret);
		if (!valtype) {
			return def;
		}
		key = key + strlen(key) + 1;
		if (*key) {
			if (valtype != TVAL_NODE) {
				return def;
			}
			head = ret.ptrval;
		} else if (req_valtype && req_valtype != valtype) {
			return def;
		}
	}
	return ret;
}

tern_val tern_find_path(tern_node *head, char const *key, uint8_t valtype)
{
	tern_val def;
	def.ptrval = NULL;
	return tern_find_path_default(head, key, def, valtype);
}

tern_node * tern_insert_ptr(tern_node * head, char const * key, void * value)
{
	tern_val val;
	val.ptrval = value;
	return tern_insert(head, key, val, TVAL_PTR);
}

tern_node * tern_insert_node(tern_node *head, char const *key, tern_node *value)
{
	tern_val val;
	val.ptrval = value;
	return tern_insert(head, key, val, TVAL_NODE);
}

uint32_t tern_count(tern_node *head)
{
	uint32_t count = 0;
	if (head->left) {
		count += tern_count(head->left);
	}
	if (head->right) {
		count += tern_count(head->right);
	}
	if (!head->el) {
		count++;
	} else if (head->straight.next) {
		count += tern_count(head->straight.next);
	}
	return count;
}

#define MAX_ITER_KEY 127
void tern_foreach_int(tern_node *head, iter_fun fun, void *data, char *keybuf, int pos)
{
	if (!head->el) {
		keybuf[pos] = 0;
		fun(keybuf, head->straight.value, head->valtype, data);
	}
	if (head->left) {
		tern_foreach_int(head->left, fun, data, keybuf, pos);
	}
	if (head->el) {
		if (pos == MAX_ITER_KEY) {
			fatal_error("tern_foreach_int: exceeded maximum key size");
		}
		keybuf[pos] = head->el;
		tern_foreach_int(head->straight.next, fun, data, keybuf, pos+1);
	}
	if (head->right) {
		tern_foreach_int(head->right, fun, data, keybuf, pos);
	}
}

void tern_foreach(tern_node *head, iter_fun fun, void *data)
{
	//lame, but good enough for my purposes
	char key[MAX_ITER_KEY+1];
	tern_foreach_int(head, fun, data, key, 0);
}

char * tern_int_key(uint32_t key, char * buf)
{
	char * cur = buf;
	while (key)
	{
		*(cur++) = (key & 0x7F) + 1;
		key >>= 7;
	}
	*cur = 0;
	return buf;
}

void tern_free(tern_node *head)
{
	if (head->left) {
		tern_free(head->left);
	}
	if (head->right) {
		tern_free(head->right);
	}
	if (head->el) {
		tern_free(head->straight.next);
	}
	free(head);
}